Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joachim Reimann is active.

Publication


Featured researches published by Joachim Reimann.


Biochimica et Biophysica Acta | 2012

Functional proton transfer pathways in the heme-copper oxidase superfamily.

Hyun Ju Lee; Joachim Reimann; Yafei Huang; Pia Ädelroth

Heme-copper oxidases (HCuOs) terminate the respiratory chain in mitochondria and most bacteria. They are transmembrane proteins that catalyse the reduction of oxygen and use the liberated free energy to maintain a proton-motive force across the membrane. The HCuO superfamily has been divided into the oxygen-reducing A-, B- and C-type oxidases as well as the bacterial NO reductases (NOR), catalysing the reduction of NO in the denitrification process. Proton transfer to the catalytic site in the mitochondrial-like A family occurs through two well-defined pathways termed the D- and K-pathways. The B, C, and NOR families differ in the pathways as well as the mechanisms for proton transfer to the active site and across the membrane. Recent structural and functional investigations, focussing on proton transfer in the B, C and NOR families will be discussed in this review.


Journal of Inorganic Biochemistry | 2009

Exploring the terminal region of the proton pathway in the bacterial nitric oxide reductase

Ulrika Flock; Peter Lachmann; Joachim Reimann; Nicholas J. Watmough; Pia Ädelroth

The c-type nitric oxide reductase (cNOR) from Paracoccus (P.) denitrificans is an integral membrane protein that catalyzes NO reduction; 2NO+2e(-)+2H(+)-->N(2)O+H(2)O. It is also capable of catalyzing the reduction of oxygen to water, albeit more slowly than NO reduction. cNORs are divergent members of the heme-copper oxidase superfamily (HCuOs) which reduce NO, do not pump protons, and the reaction they catalyse is non-electrogenic. All known cNORs have been shown to have five conserved glutamates (E) in the catalytic subunit, by P. denitrificans numbering, the E122, E125, E198, E202 and E267. The E122 and E125 are presumed to face the periplasm and the E198, E202 and E267 are located in the interior of the membrane, close to the catalytic site. We recently showed that the E122 and E125 define the entry point of the proton pathway leading from the periplasm into the active site [U. Flock, F.H. Thorndycroft, A.D. Matorin, D.J. Richardson, N.J. Watmough, P. Adelroth, J. Biol. Chem. 283 (2008) 3839-3845]. Here we present results from the reaction between fully reduced NOR and oxygen on the alanine variants of the E198, E202 and E267. The initial binding of O(2) to the active site was unaffected by these mutations. In contrast, proton uptake to the bound O(2) was significantly inhibited in both the E198A and E267A variants, whilst the E202A NOR behaved essentially as wildtype. We propose that the E198 and E267 are involved in terminating the proton pathway in the region close to the active site in NOR.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Vectorial proton transfer coupled to reduction of O2 and NO by a heme-copper oxidase

Yafei Huang; Joachim Reimann; Håkan Lepp; Nadjia Drici; Pia Ädelroth

The heme-copper oxidase (HCuO) superfamily consists of integral membrane proteins that catalyze the reduction of either oxygen or nitric oxide. The HCuOs that reduce O2 to H2O couple this reaction to the generation of a transmembrane proton gradient by using electrons and protons from opposite sides of the membrane and by pumping protons from inside the cell or organelle to the outside. The bacterial NO-reductases (NOR) reduce NO to N2O (2NO + 2e− + 2H+ → N2O + H2O), a reaction as exergonic as that with O2. Yet, in NOR both electrons and protons are taken from the outside periplasmic solution, thus not conserving the free energy available. The cbb3-type HCuOs catalyze reduction of both O2 and NO. Here, we have investigated energy conservation in the Rhodobacter sphaeroides cbb3 oxidase during reduction of either O2 or NO. Whereas O2 reduction is coupled to buildup of a substantial electrochemical gradient across the membrane, NO reduction is not. This means that although the cbb3 oxidase has all of the structural elements for uptake of substrate protons from the inside, as well as for proton pumping, during NO reduction no pumping occurs and we suggest a scenario where substrate protons are derived from the outside solution. This would occur by a reversal of the proton pathway normally used for release of pumped protons. The consequences of our results for the general pumping mechanism in all HCuOs are discussed.


Journal of Biological Chemistry | 2010

Substrate control of internal electron transfer in bacterial nitric oxide reductase

Peter J. Lachmann; Yafei Huang; Joachim Reimann; Ulrika Flock; Pia Ädelroth

Nitric -oxide reductase (NOR) from Paracoccus denitrificans catalyzes the reduction of nitric oxide (NO) to nitrous oxide (N2O) (2NO + 2H+ + 2e− →N2O + H2O) by a poorly understood mechanism. NOR contains two low spin hemes c and b, one high spin heme b3, and a non-heme iron FeB. Here, we have studied the reaction between fully reduced NOR and NO using the “flow-flash” technique. Fully (four-electron) reduced NOR is capable of two turnovers with NO. Initial binding of NO to reduced heme b3 occurs with a time constant of ∼1 μs at 1.5 mm NO, in agreement with earlier studies. This reaction is [NO]-dependent, ruling out an obligatory binding of NO to FeB before ligation to heme b3. Oxidation of hemes b and c occurs in a biphasic reaction with rate constants of 50 s−1 and 3 s−1 at 1.5 mm NO and pH 7.5. Interestingly, this oxidation is accelerated as [NO] is lowered; the rate constants are 120 s−1 and 12 s−1 at 75 μm NO. Protons are taken up from solution concomitantly with oxidation of the low spin hemes, leading to an acceleration at low pH. This effect is, however, counteracted by a larger degree of substrate inhibition at low pH. Our data thus show that substrate inhibition in NOR, previously observed during multiple turnovers, already occurs during a single oxidative cycle. Thus, NO must bind to its inhibitory site before electrons redistribute to the active site. The further implications of our data for the mechanism of NO reduction by NOR are discussed.


Biochemistry | 2010

Functional Role of Thr-312 and Thr-315 in the Proton-Transfer Pathway in ba3 Cytochrome c Oxidase from Thermus thermophilus

Irina Smirnova; Joachim Reimann; Christoph von Ballmoos; Hsin-Yang Chang; Robert B. Gennis; James A. Fee; Peter Brzezinski; Pia Ädelroth

Cytochrome ba(3) from Thermus thermophilus is a member of the family of B-type heme-copper oxidases, which have a low degree of sequence homology to the well-studied mitochondrial-like A-type enzymes. Recently, it was suggested that the ba(3) oxidase has only one pathway for the delivery of protons to the active site and that this pathway is spatially analogous to the K-pathway in the A-type oxidases [Chang, H.-Y., et al. (2009) Proc. Natl. Acad. Sci. U.S.A. 106, 16169-16173]. This suggested pathway includes two threonines at positions 312 and 315. In this study, we investigated the time-resolved reaction between fully reduced cytochrome ba(3) and O(2) in variants where Thr-312 and Thr-315 were modified. While in the A-type oxidases this reaction is essentially unchanged in variants with the K-pathway modified, in the Thr-312 --> Ser variant in the ba(3) oxidase both reactions associated with proton uptake from solution, the P(R) --> F and F --> O transitions, were slowed compared to those of wild-type ba(3). The observed time constants were slowed approximately 3-fold (for P(R) --> F, from 60 to approximately 170 mus in the wild type) and approximately 30-fold (for F --> O, from 1.1 to approximately 40 ms). In the Thr-315 --> Val variant, the F --> O transition was approximately 5-fold slower (5 ms) than for the wild-type oxidase, whereas the P(R) --> F transition displayed an essentially unchanged time constant. However, the uptake of protons from solution was a factor of 2 slower and decoupled from the optical P(R) --> F transition. Our results thus show that proton uptake is significantly and specifically inhibited in the two variants, strongly supporting the suggested involvement of T312 and T315 in the transfer of protons to the active site during O(2) reduction in the ba(3) oxidase.


Biochemical Society Transactions | 2006

Proton transfer in bacterial nitric oxide reductase

Ulrika Flock; Joachim Reimann; Pia Ädelroth

The NOR (nitric oxide reductase) from Paracoccus denitrificans catalyses the two-electron reduction of NO to N(2)O (2NO+2H(+)+2e(-)-->N(2)O+H(2)O). The NOR is a divergent member of the superfamily of haem-copper oxidases, oxygen-reducing enzymes which couple the reduction of oxygen with translocation of protons across the membrane. In contrast, reduction of NO catalysed by NOR is non-electrogenic which, since electrons are supplied from the periplasmic side of the membrane, implies that the protons needed for NO reduction are also taken from the periplasm. Thus NOR must contain a proton-transfer pathway leading from the periplasmic side of the membrane into the catalytic site. The proton pathway has not been identified, and the mechanism and timing of proton transfer during NO reduction is unknown. To address these questions, we have studied the reaction between NOR and the chemically less reactive oxidant O(2). When fully reduced NOR reacts with O(2), proton-coupled electron transfer occurs in a reaction that is rate-limited by internal proton transfer from a group with a pK(a) of 6.6. This group is presumably an amino acid residue close to the active site that acts as a proton donor also during NO reduction. The results are discussed in the framework of a structural model that identifies possible candidates for the proton donor as well as for the proton-transfer pathway.


Journal of Biological Chemistry | 2013

The Nitric-oxide Reductase from Paracoccus denitrificans Uses a Single Specific Proton Pathway

Josy ter Beek; Nils Krause; Joachim Reimann; Peter Lachmann; Pia Ädelroth

Background: NO reductase (NOR) takes up protons from the opposite side of the membrane compared with other heme-copper oxidases. Results: NOR is sensitive to mutations along the suggested proton pathway 1 but not the others. Conclusion: Only pathway 1 is used for proton transfer. Significance: Although no energy is conserved, proton transfer still occurs through a specific pathway. The NO reductase from Paracoccus denitrificans reduces NO to N2O (2NO + 2H+ + 2e− → N2O + H2O) with electrons donated by periplasmic cytochrome c (cytochrome c-dependent NO reductase; cNOR). cNORs are members of the heme-copper oxidase superfamily of integral membrane proteins, comprising the O2-reducing, proton-pumping respiratory enzymes. In contrast, although NO reduction is as exergonic as O2 reduction, there are no protons pumped in cNOR, and in addition, protons needed for NO reduction are derived from the periplasmic solution (no contribution to the electrochemical gradient is made). cNOR thus only needs to transport protons from the periplasm into the active site without the requirement to control the timing of opening and closing (gating) of proton pathways as is needed in a proton pump. Based on the crystal structure of a closely related cNOR and molecular dynamics simulations, several proton transfer pathways were suggested, and in principle, these could all be functional. In this work, we show that residues in one of the suggested pathways (denoted pathway 1) are sensitive to site-directed mutation, whereas residues in the other proposed pathways (pathways 2 and 3) could be exchanged without severe effects on turnover activity with either NO or O2. We further show that electron transfer during single-turnover reduction of O2 is limited by proton transfer and can thus be used to study alterations in proton transfer rates. The exchange of residues along pathway 1 showed specific slowing of this proton-coupled electron transfer as well as changes in its pH dependence. Our results indicate that only pathway 1 is used to transfer protons in cNOR.


Biochimica et Biophysica Acta | 2010

Substrate binding and the catalytic reactions in cbb3-type oxidases : the lipid membrane modulates ligand binding

Yafei Huang; Joachim Reimann; Laila M.R. Singh; Pia Ädelroth

Heme-copper oxidases (HCuOs) are the terminal components of the respiratory chain in the mitochondrial membrane or the cell membrane in many bacteria. These enzymes reduce oxygen to water and use the free energy from this reaction to maintain a proton-motive force across the membrane in which they are embedded. The heme-copper oxidases of the cbb3-type are only found in bacteria, often pathogenic ones since they have a low Km for O2, enabling the bacteria to colonize semi-anoxic environments. Cbb3-type (C) oxidases are highly divergent from the mitochondrial-like aa3-type (A) oxidases, and within the heme-copper oxidase family, cbb3 is the closest relative to the most divergent member, the bacterial nitric oxide reductase (NOR). Nitric oxide reductases reduce NO to N2O without coupling the reaction to the generation of any electrochemical proton gradient. The significant structural differences between A- and C-type heme-copper oxidases are manifested in the lack in cbb3 of most of the amino acids found to be important for proton pumping in the A-type, as well as in the different binding characteristics of ligands such as CO, O2 and NO. Investigations of the reasons for these differences at a molecular level have provided insights into the mechanism of O2 and NO reduction as well as the proton-pumping mechanism in all heme-copper oxidases. In this paper, we discuss results from these studies with the focus on the relationship between proton transfer and ligand binding and reduction. In addition, we present new data, which show that CO binding to one of the c-type hemes of CcoP is modulated by protein-lipid interactions in the membrane. These results show that the heme c-CO binding can be used as a probe of protein-membrane interactions in cbb3 oxidases, and possible physiological consequences for this behavior are discussed.


Biochimica et Biophysica Acta | 2012

Proton transfer in the quinol-dependent nitric oxide reductase from Geobacillus stearothermophilus during reduction of oxygen

Lina Salomonsson; Joachim Reimann; Takehiko Tosha; Nils Krause; Nathalie Gonska; Yoshitsugu Shiro; Pia Ädelroth

Bacterial nitric oxide reductases (NOR) are integral membrane proteins that catalyse the reduction of nitric oxide to nitrous oxide, often as a step in the process of denitrification. Most functional data has been obtained with NORs that receive their electrons from a soluble cytochrome c in the periplasm and are hence termed cNOR. Very recently, the structure of a different type of NOR, the quinol-dependent (q)-NOR from the thermophilic bacterium Geobacillus stearothermophilus was solved to atomic resolution [Y. Matsumoto, T. Tosha, A.V. Pisliakov, T. Hino, H. Sugimoto, S. Nagano, Y. Sugita and Y. Shiro, Nat. Struct. Mol. Biol. 19 (2012) 238-246]. In this study, we have investigated the reaction between this qNOR and oxygen. Our results show that, like some cNORs, the G. stearothermophilus qNOR is capable of O(2) reduction with a turnover of ~3electronss(-1) at 40°C. Furthermore, using the so-called flow-flash technique, we show that the fully reduced (with three available electrons) qNOR reacts with oxygen in a reaction with a time constant of 1.8ms that oxidises the low-spin heme b. This reaction is coupled to proton uptake from solution and presumably forms a ferryl intermediate at the active site. The pH dependence of the reaction is markedly different from a corresponding reaction in cNOR from Paracoccus denitrificans, indicating that possibly the proton uptake mechanism and/or pathway differs between qNOR and cNOR. This study furthermore forms the basis for investigation of the proton transfer pathway in qNOR using both variants with putative proton transfer elements modified and measurements of the vectorial nature of the proton transfer. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).


Biochemical Society Transactions | 2008

Molecular architecture of the proton diode of cytochrome c oxidase

Peter Brzezinski; Joachim Reimann; Pia Ädelroth

CytcO (cytochrome c oxidase) is a membrane-bound multisubunit protein which catalyses the reduction of O(2) to H(2)O. The reaction is arranged topographically so that the electrons and protons are taken from opposite sides of the membrane and, in addition, it is also linked to proton pumping across the membrane. Thus the CytcO moves an equivalent of two positive charges across the membrane per electron transferred to O(2). Proton transfer through CytcO must be controlled by the protein to prevent leaks, which would dissipate the proton electrochemical gradient that is maintained across the membrane. The molecular mechanism by which the protein controls the unidirectionality of proton-transfer (cf. proton diode) reactions and energetically links electron transfer to proton translocation is not known. This short review summarizes selected results from studies aimed at understanding this mechanism, and we discuss a possible mechanistic principle utilized by the oxidase to pump protons.

Collaboration


Dive into the Joachim Reimann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge