Joachim Stangier
Boehringer Ingelheim
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joachim Stangier.
Thrombosis and Haemostasis | 2010
J. van Ryn; Joachim Stangier; Sebastian Haertter; K.-H. Liesenfeld; Wolfgang Wienen; Martin Feuring; Andreas Clemens
Dabigatran etexilate is an oral, reversible direct thrombin inhibitor that is approved in the EU and several other countries for the prevention of venous thromboembolism after elective hip and knee replacement, and is in advanced clinical development for other thromboembolic disorders. Dabigatran has a predictable pharmacokinetic profile, allowing for a fixed-dose regimen without the need for routine coagulation monitoring. In certain clinical situations such as serious bleeding into critical organs (e.g. intracerebral bleeding), potential overdose and emergency surgery, clinicians will need to make an assessment of the anticoagulant status of a patient receiving dabigatran before deciding on future management strategies. If available, thrombin clotting time (TT), ecarin clotting time (ECT) and TT determined by Hemoclot thrombin inhibitor assay are sensitive tests to evaluate the anticoagulant effects of dabigatran. Prothrombin time (INR) is less sensitive than other assays and cannot be recommended. The activated partial thromboplastin time (aPTT) can provide a useful qualitative assessment of anticoagulant activity but is less sensitive at supratherapeutic dabigatran levels. There are limited data for activated clotting time (ACT). Overall, the aPTT and TT are the most accessible qualitative methods for determining the presence or absence of anticoagulant effect. Although there is no specific antidote to antagonise the anticoagulant effect of dabigatran, due to its short duration of effect drug discontinuation is usually sufficient to reverse any excessive anticoagulant activity. In case of potential overdose, the feasibility of early administration of activated charcoal and subsequent charcoal filtration are undergoing preclinical evaluation. Dabigatran can also be dialysed in patients with renal impairment. In instances of life-threatening bleeding, where conventional measures have failed or are unavailable, other non-specific prohaemostatic agents such as recombinant activated factor VII and prothrombin complex concentrates can be considered.
The New England Journal of Medicine | 2015
Charles V. Pollack; Paul A. Reilly; John W. Eikelboom; Stephan Glund; Peter Verhamme; Richard A. Bernstein; Robert Dubiel; Menno V. Huisman; Elaine M. Hylek; Pieter Willem Kamphuisen; Jörg Kreuzer; Jerrold H. Levy; Frank W. Sellke; Joachim Stangier; Thorsten Steiner; Bushi Wang; Chak Wah Kam; Jeffrey I. Weitz
BACKGROUND Specific reversal agents for non-vitamin K antagonist oral anticoagulants are lacking. Idarucizumab, an antibody fragment, was developed to reverse the anticoagulant effects of dabigatran. METHODS We undertook this prospective cohort study to determine the safety of 5 g of intravenous idarucizumab and its capacity to reverse the anticoagulant effects of dabigatran in patients who had serious bleeding (group A) or required an urgent procedure (group B). The primary end point was the maximum percentage reversal of the anticoagulant effect of dabigatran within 4 hours after the administration of idarucizumab, on the basis of the determination at a central laboratory of the dilute thrombin time or ecarin clotting time. A key secondary end point was the restoration of hemostasis. RESULTS This interim analysis included 90 patients who received idarucizumab (51 patients in group A and 39 in group B). Among 68 patients with an elevated dilute thrombin time and 81 with an elevated ecarin clotting time at baseline, the median maximum percentage reversal was 100% (95% confidence interval, 100 to 100). Idarucizumab normalized the test results in 88 to 98% of the patients, an effect that was evident within minutes. Concentrations of unbound dabigatran remained below 20 ng per milliliter at 24 hours in 79% of the patients. Among 35 patients in group A who could be assessed, hemostasis, as determined by local investigators, was restored at a median of 11.4 hours. Among 36 patients in group B who underwent a procedure, normal intraoperative hemostasis was reported in 33, and mildly or moderately abnormal hemostasis was reported in 2 patients and 1 patient, respectively. One thrombotic event occurred within 72 hours after idarucizumab administration in a patient in whom anticoagulants had not been reinitiated. CONCLUSIONS Idarucizumab completely reversed the anticoagulant effect of dabigatran within minutes. (Funded by Boehringer Ingelheim; RE-VERSE AD ClinicalTrials.gov number, NCT02104947.).
Clinical Pharmacokinectics | 2010
Joachim Stangier; Karin Rathgen; Hildegard Stähle; Dago Mazur
AbstractBackground and Objective: Dabigatran etexilate is an oral direct thrombin inhibitor in clinical development for the prevention and treatment of thromboembolic disorders. Following oral administration, dabigatran etexilate is rapidly absorbed and converted into its active form, dabigatran. The aim of this study was to investigate the effect of renal impairment on the pharmacokinetics and pharmacodynamics of dabigatran following administration of a single oral dose of dabigatran etexilate in subjects with renal impairment (150 mg) or end-stage renal disease (ESRD) on maintenance haemodialysis (50 mg). Methods: This open-label, parallel-group, single-centre study enrolled 23 subjects with mild, moderate or severe renal impairment (creatinine clearance >50 to ≤80, >30 to ≤50 and ≤30 mL/min, respectively), 6 patients with ESRD and 6 healthy subjects. Blood and urine samples were collected up to 96 hours after dosing for determination of dabigatran pharmacokinetic and pharmacodynamic parameters. Results: Compared with the values in healthy subjects, the area under the plasma concentration-time curve from time zero to infinity (AUC∞) values were 1.5-, 3.2- and 6.3-fold higher in subjects with mild, moderate and severe renal impairment. Changes in the maximum plasma concentration (Cmax) were modest, and the time to reach the Cmax was unchanged. In subjects with severe renal impairment, the mean terminal elimination half-life was doubled (28 hours vs 14 hours for control). The AUC for prolongation of pharmacodynamic parameters (the activated partial thromboplastin time and ecarin clotting time) increased in line with the pharmacokinetic changes. In patients with ESRD, the dose-normalized AUC∞ was approximately twice the value in the control group. Haemodialysis removed 62–68% of the dose. Dabigatran etexilate was well tolerated in all groups. Conclusions: Exposure to dabigatran is increased by renal impairment and correlates with the severity of renal dysfunction. A decrease in the dose and/or an increase in the administration interval in these patients may be appropriate. In patients with ESRD, dabigatran can be partly removed from the plasma by haemodialysis.
Clinical Pharmacokinectics | 2008
Joachim Stangier
The direct thrombin inhibitor dabigatran etexilate is currently in phase III of development for the prophylaxis and treatment of thromboembolic disorders, with three trials completed in primary venous thromboembolism (VTE) prevention. Dabigatran etexilate is an orally administered prodrug, which is rapidly absorbed and converted to the active form, dabigatran. Dabigatran has been shown to specifically and reversibly inhibit thrombin, the key enzyme in the coagulation cascade. Studies in healthy volunteers and in patients undergoing orthopaedic surgery have indicated that dabigatran has a predictable pharmacokinetic/pharmacodynamic profile, allowing for a fixed-dose regimen. Peak plasma concentrations of dabigatran are reached approximately 2 hours after oral administration in healthy volunteers, with no unexpected accumulation of drug concentrations upon multiple dosing. Excretion is predominantly via the renal route as unchanged drug. Dabigatran is not metabolized by cytochrome P450 isoenzymes. The small differences in dabigatran pharmacokinetics associated with age and gender are attributed to variations in renal function. Additional studies have shown that the pharmacokinetic/pharmacodynamic profile of dabigatran is consistent across a range of patient populations, with no effect of moderate hepatic impairment being observed. Drug-drug interactions are not observed with concomitant administration of atorvastatin, diclofenac or digoxin. The pharmacodynamic profile of dabigatran demonstrates effective anticoagulation combined with a low risk of bleeding. Further phase III studies are ongoing, including acute VTE treatment and stroke prevention in atrial fibrillation; the results obtained so far show that dabigatran etexilate is well tolerated and effective in the treatment and prevention of thromboembolic events.
Drug Metabolism and Disposition | 2008
Stefan Blech; Thomas Ebner; Eva Ludwig-Schwellinger; Joachim Stangier; Willy Roth
The pharmacokinetics and metabolism of the direct thrombin inhibitor dabigatran (BIBR 953 ZW, β-alanine, N-[[2-[[[4-(aminoiminomethyl)phenyl]amino]methyl]-1-methyl-1H-benzimidazol-5-yl]carbonyl]-N-2-pyridinyl) were studied in 10 healthy males, who received 200 mg of [14C]dabigatran etexilate (BIBR 1048 MS, the oral prodrug of dabigatran) or an i.v. infusion of 5 mg of [14C]dabigatran. Radioactivity was measured in plasma, urine, and feces over 1 week. The metabolite pattern was analyzed by high-performance liquid chromatography with on-line radioactivity detection, and metabolite structures were elucidated by mass spectrometry. Dabigatran etexilate was rapidly converted to dabigatran, with peak plasma dabigatran concentrations being attained after approximately 1.5 h; the bioavailability of dabigatran after p.o. administration of dabigatran etexilate was 7.2%. Dabigatran was predominantly excreted in the feces after p.o. treatment and in the urine after i.v. treatment. The mean terminal half-life of dabigatran was approximately 8 h. The predominant metabolic reaction was esterase-mediated hydrolysis of dabigatran etexilate to dabigatran. Phase I metabolites accounted for ≤0.6% of the dose in urine and 5.8% of the dose in feces following p.o. administration and ≤1.5 and 0.2%, respectively, following i.v. administration. Dabigatran acylglucuronides accounted for 0.4 and 4% of the dose in urine after p.o. and i.v. dosing, respectively. In vitro experiments confirmed that dabigatran etexilate is metabolized primarily by esterases and that cytochrome P450 plays no relevant role. These findings suggest that pharmacologically active concentrations of dabigatran are readily achieved after p.o. administration of dabigatran etexilate and that the potential for clinically relevant interactions between dabigatran and drugs metabolized by cytochrome P450 is low.
Clinical Pharmacokinectics | 2008
Joachim Stangier; Hildegard Stähle; Karin Rathgen; Reinhold Fuhr
ObjectivesTo investigate the pharmacokinetic and pharmacodynamic profile of dabigatran in healthy elderly subjects; to assess the intra- and interindividual variability of dabigatran pharmacokinetics in order to assess possible gender differences; and to assess the effect of pantoprazole coadministration on the bioavailability of dabigatran.Study design and settingOpen-label, parallel-group, single-centre study, consisting of a baseline screening visit, 7-day treatment period and post-study examination visit.Subjects and intervention36 healthy elderly subjects (aged ≥65 years) with a body mass index of 18.5–29.9 kg/m2. Subjects were randomized to receive dabigatran etexilate either with or without coadministration of pantoprazole. Dabigatran etexilate was administered as capsules at 150 mg twice daily over 6 days and once on the morning of day 7. Pantoprazole was administered at 40 mg twice daily, starting 2 days prior to dabigatran etexilate administration and ending on the morning of day 7.Main outcome measuresThe primary pharmacokinetic measurements included the area under the plasma concentration-time curve at steady state (AUCss), maximum (Cmax,ss) and minimum (Cmin,ss) plasma concentrations at steady state, terminal half-life (t½), time to reach Cmax,ss and renal clearance of dabigatran. The secondary pharmacokinetic parameters included the mean residence time, total oral clearance and volume of distribution. The pharmacodynamic parameters measured were the blood coagulation parameters ecarin clotting time (ECT) and activated partial thromboplastin time (aPTT).ResultsWith twice-daily administration of dabigatran etexilate, plasma concentrations of dabigatran reached steady state within 2–3 days, which is consistent with a t½ of 12–14 hours. The mean (SD) peak plasma concentrations on day 4 of treatment in male and female elderly subjects were 256 ng/mL (21.8) and 255 ng/mL (84.0), respectively. The peak plasma concentrations were reached after a median of 3 hours (range 2.0–4.0 hours). Coadministration with pantoprazole decreased the average bioavailability of dabigatran (the AUCss) by 24% (day 4; 90% CI 7.4, 37.8) and 20% (day 7; 90% CI 5.2, 33.3). Intra- and interindividual pharmacokinetic variability in the overall population was low (<30% coefficient of variation), indicating that dabigatran has a predictable pharmacokinetic profile. Prolongation of the ECT and aPTT correlated with, and paralleled, the plasma concentration-time profile of dabigatran, which demonstrates a rapid onset of action without a time delay, and also illustrates the direct mode of action of the drug on thrombin in plasma. The ECT increased in direct proportion to the plasma concentration, and the aPTT displayed a linear relationship with the square root of the plasma concentration. The mean AUCss was 3–19% higher in female subjects than in male subjects, which was likely due to gender differences in creatinine clearance. The safety profile of dabigatran was good, with and without pantoprazole coadministration.ConclusionsDabigatran demonstrated reproducible and predictable pharmacokinetic and pharmacodynamic characteristics, together with a good safety profile, when administered to healthy elderly subjects. Minor gender differences were not considered clinically relevant. The effects of pantoprazole coadministration on the bioavailability of dabigatran were considered acceptable, and dose adjustment is not considered necessary.
The Journal of Clinical Pharmacology | 2005
Joachim Stangier; Bengt I. Eriksson; Ola E. Dahl; L. Ahnfelt; Gerhard Nehmiz; Hildegard Stähle; Karin Rathgen; Robbyna Svärd
Dabigatran etexilate is an oral low‐molecular‐weight direct thrombin inhibitor. Following oral administration, dabigatran etexilate is rapidly converted to its active form, dabigatran. The authors investigated the absorption, distribution, and elimination of a single 150‐mg dose capsule formulation of dabigatran etexilate in healthy volunteers and patients undergoing total hip replacement. In an open‐label, 3‐way crossover study, dabigatran etexilate was administered to 18 male volunteers in the fasted state, after administration of food and with coadministration of the proton pump inhibitor, pantoprazole. In a subsequent multicenter, open‐label study, 59 patients received a single dose of dabigatran etexilate, administered 1 to 3 hours following total hip replacement. In healthy volunteers, food had no effect on the extent of absorption of dabigatran etexilate, although there was reduced interindividual variability for dabigatran maximum plasma concentration and AUC0‐∞. A decrease in the mean dabigatran AUC0‐∞ (904 to 705 ng•h/mL) occurred with coadministration of pantoprazole. In patients undergoing total hip replacement, immediate onset of absorption was seen with the maximum plasma concentration of dabigatran occurring after 6 hours. The AUC0–24 of dabigatran was 88% of the steady‐state AUC using a preliminary tablet formulation and 106% of that seen in the healthy volunteer study. Compared with healthy volunteers, the postoperative profile was flattened with delayed peak concentrations. In summary, administration of the dabigatran etexilate capsule with food has no effect on the extent of dabigatran absorption, with a moderate decrease when coadministered with pantoprazole. Adequate plasma concentrations of dabigatran were seen with early postoperative administration of the dabigatran etexilate capsule. These pharmacokinetic characteristics confirm the suitability of this oral solid dosage form for use in future clinical trials.
Blood Coagulation & Fibrinolysis | 2012
Joachim Stangier; Martin Feuring
The objective of the present study was to assess the suitability of an accurate, sensitive, standardized, chronometric blood coagulation test to determine the anticoagulation activity of dabigatran and to quantify concentrations of dabigatran in plasma. Dabigatran was spiked at increasing concentrations in pooled citrated normal human plasma to measure diluted thrombin time with the HEMOCLOT THROMBIN INHIBITOR assay. Calibration curve linearity, inter-assay and intra-assay precision, and assay accuracy were investigated. Dabigatran stability in plasma and the feasibility of lyophilized dabigatran standards for assay calibration were assessed. Data are presented as back-calculated plasma concentrations of dabigatran using regression analysis. Dabigatrans calibration curve for thrombin clotting time was linear over the concentration range 0–4000 nmol/l (0–1886 ng/ml). The R2 was 0.99. Total assay imprecision for dabigatran was 4.7–12.0% coefficient of variation, with 1.2–3.1% for intra-run imprecision, 4.0–10.0% for inter-run precision and 0.3–8.3% for between-day imprecision. Assay accuracy was determined at three dabigatran concentrations; deviation from sample target concentrations ranged from −20.7% (100 nmol/l; 47.15 ng/ml) to 5.6% (1500 nmol/l; 707.3 ng/ml). Assay robustness was determined by analysing identical dabigatran samples in two independent laboratories. The mean bias of dabigatran coagulation times between laboratories was 6.6%. The HEMOCLOT Thrombin Inhibitors assay is suitable for determining the anticoagulant activity and calculating plasma concentrations of dabigatran using simple and widely available chronometric coagulation devices. The use of this rapid, established, standardized and calibrated assay should provide accurate and consistent results when assessing the anticoagulant activity of dabigatran.
Clinical and Applied Thrombosis-Hemostasis | 2009
Joachim Stangier; Andreas Clemens
Dabigatran etexilate is a novel, oral reversible direct thrombin inhibitor that is rapidly absorbed and converted to its active form, dabigatran. Dabigatran has been shown to be a potent, competitive, and reversible inhibitor of thrombin, inhibiting both thrombin activity and generation. Studies in healthy volunteers and in patients undergoing orthopedic surgery indicate that dabigatran has a predictable pharmacokinetic profile, allowing for a fixed-dose regimen without the need for coagulation monitoring. In healthy volunteers, peak plasma concentrations of dabigatran are reached approximately 2 hours after oral administration. The elimination half-life is 12 to 14 hours, with clearance predominantly occurring via renal excretion of unchanged drug. Dabigatran is not metabolized by cytochrome P450 isoenzymes, has no interactions with food, and also has a low potential for drug—drug interactions. The pharmacokinetic profile of dabigatran is consistent across a broad range of different patient populations and is unaffected by gender, body weight, ethnic origin, obesity, and mild-to-moderate hepatic impairment. Small differences in dabigatran pharmacokinetics associated with age are attributable to variation in renal function. Dabigatran etexilate produces a predictable pharmacodynamic effect and requires no coagulation monitoring. It has been approved in the European Union (EU) and Canada for prophylaxis of thromboembolism in patients undergoing total knee or hip arthroplasty. Ongoing clinical trials are investigating its use in the treatment of venous thromboembolism, prevention of stroke in patients with nonvalvular atrial fibrillation, and treatment of thromboembolic complications, following acute coronary syndromes.
The Lancet | 2015
Stephan Glund; Joachim Stangier; Michael Schmohl; Dietmar Gansser; Stephen Norris; Joanne van Ryn; Benjamin Lang; Steven Ramael; Viktoria Moschetti; Fredrik Gruenenfelder; Paul A. Reilly; Jörg Kreuzer
BACKGROUND Idarucizumab is a monoclonal antibody fragment that binds dabigatran with high affinity in a 1:1 molar ratio. We investigated the safety, tolerability, and efficacy of increasing doses of idarucizumab for the reversal of anticoagulant effects of dabigatran in a two-part phase 1 study (rising-dose assessment and dose-finding, proof-of-concept investigation). Here we present the results of the proof-of-concept part of the study. METHODS In this randomised, placebo-controlled, double-blind, proof-of-concept phase 1 study, we enrolled healthy volunteers (aged 18-45 years) with a body-mass index of 18·5-29·9 kg/m(2) into one of four dose groups at SGS Life Sciences Clinical Research Services, Belgium. Participants were randomly assigned within groups in a 3:1 ratio to idarucizumab or placebo using a pseudorandom number generator and a supplied seed number. Participants and care providers were masked to treatment assignment. All participants received oral dabigatran etexilate 220 mg twice daily for 3 days and a final dose on day 4. Idarucizumab (1 g, 2 g, or 4 g 5-min infusion, or 5 g plus 2·5 g in two 5-min infusions given 1 h apart) was administered about 2 h after the final dabigatran etexilate dose. The primary endpoint was incidence of drug-related adverse events, analysed in all randomly assigned participants who received at least one dose of dabigatran etexilate. Reversal of diluted thrombin time (dTT), ecarin clotting time (ECT), activated partial thromboplastin time (aPTT), and thrombin time (TT) were secondary endpoints assessed by measuring the area under the effect curve from 2 h to 12 h (AUEC2-12) after dabigatran etexilate ingestion on days 3 and 4. This trial is registered with ClinicalTrials.gov, number NCT01688830. FINDINGS Between Feb 23, and Nov 29, 2013, 47 men completed this part of the study. 12 were enrolled into each of the 1 g, 2 g, or 5 g plus 2·5 g idarucizumab groups (nine to idarucizumab and three to placebo in each group), and 11 were enrolled into the 4 g idarucizumab group (eight to idarucizumab and three to placebo). Drug-related adverse events were all of mild intensity and reported in seven participants: one in the 1 g idarucizumab group (infusion site erythema and hot flushes), one in the 5 g plus 2·5 g idarucizumab group (epistaxis); one receiving placebo (infusion site haematoma), and four during dabigatran etexilate pretreatment (three haematuria and one epistaxis). Idarucizumab immediately and completely reversed dabigatran-induced anticoagulation in a dose-dependent manner; the mean ratio of day 4 AUEC2-12 to day 3 AUEC2-12 for dTT was 1·01 with placebo, 0·26 with 1 g idarucizumab (74% reduction), 0·06 with 2 g idarucizumab (94% reduction), 0·02 with 4 g idarucizumab (98% reduction), and 0·01 with 5 g plus 2·5 g idarucizumab (99% reduction). No serious or severe adverse events were reported, no adverse event led to discontinuation of treatment, and no clinically relevant difference in incidence of adverse events was noted between treatment groups. INTERPRETATION These phase 1 results show that idarucizumab was associated with immediate, complete, and sustained reversal of dabigatran-induced anticoagulation in healthy men, and was well tolerated with no unexpected or clinically relevant safety concerns, supporting further testing. Further clinical studies are in progress. FUNDING Boehringer Ingelheim Pharma GmbH & Co KG.