Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joachim Strengbom is active.

Publication


Featured researches published by Joachim Strengbom.


AMBIO: A Journal of the Human Environment | 2005

Nitrogen deposition and the biodiversity of boreal forests: implications for the nitrogen critical load.

Annika Nordin; Joachim Strengbom; Johanna Witzell; Torgny Näsholm; Lars Ericson

Abstract The critical load concept is used to establish the deposition levels which ecosystems can tolerate without significant harmful effects. Here we summarize work within the Swedish research program Abatement Strategies for Transboundary Air Pollution (ASTA) assessing the critical load of N for boreal forests. Results from both field experiments in an area with low background N deposition in northern Sweden, and from a large-scale monitoring study, show that important vegetational changes start to take place when adding low N doses and that recovery of the vegetation after ceasing N input is a very slow process. The data presented indicate that changes in key ecosystem components occur even at a lower rate of N input than the present recommended empirical critical load for boreal forest understorey vegetation of 10–15 kg N ha−1 yr−1. Based on the data presented, we suggest that the critical load should be lowered to 6 kg N ha−1 yr−1.


Ecology | 2010

Rapid ecosystem shifts in peatlands: linking plant physiology and succession.

Gustaf Granath; Joachim Strengbom; Håkan Rydin

Stratigraphic records from peatlands suggest that the shift from a rich fen (calcareous fen) to an ombrotrophic bog can occur rapidly. This shift constitutes a switch from a species-rich ecosystem to a species-poor one with greater carbon storage. In this process, the invasion and expansion of acidifying bog species of Sphagnum (peat mosses) play a key role. To test under what conditions an acidifying bog species could invade a rich fen, we conducted three experiments, contrasting the bog species S. fucsum with the rich-fen species S. warnstorfii and S. teres. We first tested the effect of calcareous water by growing the three species at different constant height above the water table (HWT; 2, 7, and 14 cm) in a rich-fen pool and measured maximum photosynthetic rate and production and difference in length growth as an indicator of competition. In none of the species was the photosynthetic capacity negatively affected when placed at low HWT, but S. fuscum was a weaker competitor at low HWT. In our second experiment we transplanted the three species into microhabitats with different and naturally varying HWT in a rich fen. Here, S. fuscum nearly ceased to photosynthesize when transplanted to low HWT (brown moss carpet), while it performed similarly to the two rich-fen species at the intermediate level (S. warnstorfii hummock level). In contrast to S. fuscum, the rich-fen sphagna performed equally well in both habitats. The brown moss carpet was seasonally flooded, and in our third experiment we found that S. fuscum, but not S. teres, was severely damaged when submerged in rich-fen water. Our results suggest two thresholds in HWT affecting the ecosystem switch: one level that reduces the risk of submergence and a higher one that makes bog sphagna competitive against the rich-fen species.


AMBIO: A Journal of the Human Environment | 2003

Regional differences in the occurrence of understorey species reflect nitrogen deposition in Swedish forests.

Joachim Strengbom; Mats Walheim; Torgny Näsholm; Lars Ericson

Abstract Possible links between the occurrence of Vaccinium myrtillus, V. vitisidaea and Deschampsia flexuosa and rates of nitrogen deposition were investigated in 557 coniferous forest stands. In areas with high N-deposition, V. myrtillus was less frequent, less abundant and more susceptible to the leaf pathogen Valdensia heterodoxa than in areas with lower levels of N-deposition. The occurrence of V. vitis-idaea was also strongly negatively correlated with in-creasing N-deposition, but no such trend was found for D. flexuosa. In regions with high N-deposition, V. myrtillus was more common in stands dominated by Scots pine than in stands dominated by Norway spruce. This was not the case in regions with lower levels of N-deposition. The patterns observed accord with results from N-addition experiments that demonstrate significant effects on vegetation, caused by N-deposition. The data suggest that even low rates of N-deposition may decrease the abundance of the most dominant species in coniferous forest ground flora.


Ecology and Evolution | 2014

Underdispersion and overdispersion of traits in terrestrial snail communities on islands

Tina Astor; Joachim Strengbom; Matty P. Berg; Lisette Lenoir; Bryndís Marteinsdóttir; Jan Bengtsson

Understanding and disentangling different processes underlying the assembly and diversity of communities remains a key challenge in ecology. Species can assemble into communities either randomly or due to deterministic processes. Deterministic assembly leads to species being more similar (underdispersed) or more different (overdispersed) in certain traits than would be expected by chance. However, the relative importance of those processes is not well understood for many organisms, including terrestrial invertebrates. Based on knowledge of a broad range of species traits, we tested for the presence of trait underdispersion (indicating dispersal or environmental filtering) and trait overdispersion (indicating niche partitioning) and their relative importance in explaining land snail community composition on lake islands. The analysis of community assembly was performed using a functional diversity index (Raos quadratic entropy) in combination with a null model approach. Regression analysis with the effect sizes of the assembly tests and environmental variables gave information on the strength of under- and overdispersion along environmental gradients. Additionally, we examined the link between community weighted mean trait values and environmental variables using a CWM-RDA. We found both trait underdispersion and trait overdispersion, but underdispersion (eight traits) was more frequently detected than overdispersion (two traits). Underdispersion was related to four environmental variables (tree cover, habitat diversity, productivity of ground vegetation, and location on an esker ridge). Our results show clear evidence for underdispersion in traits driven by environmental filtering, but no clear evidence for dispersal filtering. We did not find evidence for overdispersion of traits due to diet or body size, but overdispersion in shell shape may indicate niche differentiation between snail species driven by small-scale habitat heterogeneity. The use of species traits enabled us to identify key traits involved in snail community assembly and to detect the simultaneous occurrence of trait underdispersion and overdispersion.


Ecological Applications | 2016

A cross‐continental comparison of plant and beetle responses to retention of forest patches during timber harvest

Susan C. Baker; Charles B. Halpern; Tim Wardlaw; Christel C. Kern; Graham J. Edgar; Russell Thomson; Richard E. Bigley; Jerry F. Franklin; Kamal J. K. Gandhi; Lena Gustafsson; Samuel Johnson; Brian J. Palik; Thomas A. Spies; E. Ashley Steel; Jan Weslien; Joachim Strengbom

Timber harvest can adversely affect forest biota. Recent research and application suggest that retention of mature forest elements (retention forestry), including unharvested patches (or aggregates) within larger harvested units, can benefit biodiversity compared to clearcutting. However, it is unclear whether these benefits can be generalized among the diverse taxa and biomes in which retention forestry is practiced. Lack of comparability in methods for sampling and analyzing responses to timber harvest and edge creation presents a challenge to synthesis. We used a consistent methodology (similarly spaced plots or traps along transects) to investigate responses of vascular plants and ground-active beetles to aggregated retention at replicate sites in each of four temperate and boreal forest types on three continents: Douglas-fir forests in Washington, USA; aspen forests in Minnesota, USA; spruce forests in Sweden; and wet eucalypt forests in Tasmania, Australia. We assessed (1) differences in local (plot-scale) species richness and composition between mature (intact) and regenerating (previously harvested) forest; (2) the lifeboating function of aggregates (capacity to retain species of unharvested forest); and whether intact forests and aggregates (3) are susceptible to edge effects and (4) influence the adjacent regenerating forest. Intact and harvested forests differed in composition but not richness of plants and beetles. The magnitude of this difference was generally similar among regions, but there was considerable heterogeneity of composition within and among replicate sites. Aggregates within harvest units were effective at lifeboating for both plant and beetle communities. Edge effects were uncommon even within the aggregates. In contrast, effects of forest influence on adjacent harvested areas were common and as strong for aggregates as for larger blocks of intact forest. Our results provide strong support for the widespread application of aggregated retention in boreal and temperate forests. The consistency of pattern in four very different regions of the world suggests that, for forest plants and beetles, responses to aggregated retention are likely to apply more widely. Our results suggest that through strategic placement of aggregates, it is possible to maintain the natural heterogeneity and biodiversity of mature forests managed for multiple objectives.


PLOS ONE | 2016

A Pine Is a Pine and a Spruce Is a Spruce – The Effect of Tree Species and Stand Age on Epiphytic Lichen Communities

Sofia Bäcklund; Mari Jönsson; Joachim Strengbom; Andreas Frisch; Göran Thor

With an increasing demand for forest-based products, there is a growing interest in introducing fast-growing non-native tree species in forest management. Such introductions often have unknown consequences for native forest biodiversity. In this study, we examine epiphytic lichen species richness and species composition on the trunks of non-native Pinus contorta and compare these to the native Pinus sylvestris and Picea abies in managed boreal forests in northern Sweden across a chronosequence of age classes. Overall, we recorded a total of 66,209 lichen occurrences belonging to 57 species in the 96 studied forest stands. We found no difference in species richness of lichens between stands of P. contorta and P. sylvestris, but stands of P. abies had higher total species richness. However, species richness of lichens in stands of P. abies decreased with increasing stand age, while no such age effect was detected for P. contorta and P. sylvestris. Lichen species composition progressively diverged with increasing stand age, and in 30-year-old stands all three tree species showed species-specific assemblages. Epiphytic lichen assemblages in stands of 30-year-old P. contorta were influenced by greater basal area, canopy closure, and average diameter at breast height, P. abies stands by higher branch density and canopy closure, and stands of P. sylvestris by greater bark crevice depth. Differences in lichen species richness and composition were mainly explained by canopy closure and habitat availability, and the greater canopy closure in mature P. abies stands promoted the colonization and growth of calicioid lichen species. Our results indicate that the non-native P. contorta have similar species richness as the native P. sylvestris. The main difference in lichen species richness and composition is between P. abies and Pinus spp. in managed forests of boreal Sweden.


PeerJ | 2016

Aboveground insect herbivory increases plant competitive asymmetry, while belowground herbivory mitigates the effect

Pernilla Borgström; Joachim Strengbom; Maria Viketoft; Riccardo Bommarco

Insect herbivores can shift the composition of a plant community, but the mechanism underlying such shifts remains largely unexplored. A possibility is that insects alter the competitive symmetry between plant species. The effect of herbivory on competition likely depends on whether the plants are subjected to aboveground or belowground herbivory or both, and also depends on soil nitrogen levels. It is unclear how these biotic and abiotic factors interactively affect competition. In a greenhouse experiment, we measured competition between two coexisting grass species that respond differently to nitrogen deposition: Dactylis glomerata L., which is competitively favoured by nitrogen addition, and Festuca rubra L., which is competitively favoured on nitrogen-poor soils. We predicted: (1) that aboveground herbivory would reduce competitive asymmetry at high soil nitrogen by reducing the competitive advantage of D. glomerata; and (2), that belowground herbivory would relax competition at low soil nitrogen, by reducing the competitive advantage of F. rubra. Aboveground herbivory caused a 46% decrease in the competitive ability of F. rubra, and a 23% increase in that of D. glomerata, thus increasing competitive asymmetry, independently of soil nitrogen level. Belowground herbivory did not affect competitive symmetry, but the combined influence of above- and belowground herbivory was weaker than predicted from their individual effects. Belowground herbivory thus mitigated the increased competitive asymmetry caused by aboveground herbivory. D. glomerata remained competitively dominant after the cessation of aboveground herbivory, showing that the influence of herbivory continued beyond the feeding period. We showed that insect herbivory can strongly influence plant competitive interactions. In our experimental plant community, aboveground insect herbivory increased the risk of competitive exclusion of F. rubra. Belowground herbivory appeared to mitigate the influence of aboveground herbivory, and this mechanism may play a role for plant species coexistence.


Archive | 2015

Effects and Empirical Critical Loads of Nitrogen for Europe

Roland Bobbink; Hilde B. M. Tomassen; Maaike Weijters; Leon J.L. van den Berg; Joachim Strengbom; Sabine Braun; Annika Nordin; Kirsten Schütz; J.P. Hettelingh

Empirical critical loads of nitrogen (N) were first presented in a background document for a workshop in 1992 in Sweden. Since their first presentation, the critical loads of N have been updated at regular intervals and for a large number of habitats. This chapter presents a brief history of the empirical critical loads and explains the process of determination of empirical critical loads for nitrogen and their reliability. For European habitats (defined as EUNIS and Natura 2000 habitat classes), current empirical critical loads for nitrogen are presented. For each of these habitats, the main effects of enhanced nitrogen inputs are discussed that have formed the basis for the determination of the empirical critical loads. Factors other than nitrogen, that may affect ecosystem processes or ecosystem functioning, are discussed as these may modify the nitrogen critical load under specific conditions.


Ecology | 2017

Above‐ and belowground insect herbivory modifies the response of a grassland plant community to nitrogen eutrophication

Pernilla Borgström; Joachim Strengbom; Lorenzo Marini; Maria Viketoft; Riccardo Bommarco

Understanding the role that species interactions play in determining the rate and direction of ecosystem change due to nitrogen (N) eutrophication is important for predicting the consequences of global change. Insects might play a major role in this context. They consume substantial amounts of plant biomass and can alter competitive interactions among plants, indirectly shaping plant community composition. Nitrogen eutrophication affects plant communities globally, but there is limited experimental evidence of how insect herbivory modifies plant community response to raised N levels. Even less is known about the roles of above- and belowground herbivory in shaping plant communities, and how the interaction between the two might modify a plant communitys response to N eutrophication. We conducted a 3-yr field experiment where grassland plant communities were subjected to above- and belowground insect herbivory with and without N addition, in a full-factorial design. We found that herbivory modified plant community responses to N addition. Aboveground herbivory decreased aboveground plant community biomass by 21%, but only at elevated N. When combined, above- and belowground herbivory had a stronger negative effect on plant community biomass at ambient N (11% decrease) than at elevated N (4% decrease). In addition, herbivory shifted the functional composition of the plant community, and the magnitude of the shifts depended on the N level. The N and herbivory treatments synergistically conferred a competitive advantage to forbs, which benefited when both herbivory types were present at elevated N. Evenness among the plant species groups increased when aboveground herbivory was present, but N addition attenuated this increase. Our results demonstrate that a deeper understanding of how plant-herbivore interactions above and below ground shape the composition of a plant community is crucial for making reliable predictions about the ecological consequences of global change.


Journal of Applied Ecology | 2018

Trade-offs in the multi-use potential of managed boreal forests

Joachim Strengbom; E. Petter Axelsson; Tomas Lundmark; Annika Nordin

Implementing multi-use forest management to account for both commercial and non-commercial ecosystem services is gaining increased global recognition. Despite its spatial extent, and great economic and ecological values, few studies have evaluated the boreal forest and its management to assess the potential for simultaneous delivery of a suite of ecosystem services. Using data from a Swedish long-term experiment, this study explores how biodiversity of the ground vegetation and potential delivery of multiple ecosystem services (timber production, carbon [C] storage and non-timber forest products) are influenced by two common silvicultural practices (thinning, fertilization and their interaction). Diversity (diversity indices and species richness) of the ground vegetation was higher in thinned than in unthinned forest, a result attributable in part to six species of lichens that only occurred in thinned forest. In addition, supply of lichens for reindeer forage was three times higher in thinned forest. Fertilization negatively affected the lingonberry shrub (Vaccinium vitis-idaea). Timber production increased with fertilization, but decreased with thinning. The potential for C storage was highest in fertilized forests, which, apart from having the highest timber production, also supported the highest standing tree biomass. The silvicultural practices evaluated induced trade-offs among the ecosystem features studied as thinning increased biodiversity of the ground vegetation, production potential of wild berries and lichens, but reduced timber production and the potential for C storage. Fertilization had the opposite effect, promoting the potential for C storage at the expense of biodiversity and the ecosystem services delivered by the ground vegetation. Synthesis and applications. Increased multi-use potential is a common goal for forest management in many parts of the world. Our result shows that commonly used silvicultural practices can be used to determine the multi-use output, and might be applied to maintain, or even increase the multi-use potential of the boreal forest biome. Nevertheless, trade-offs among values were common, indicating that the multi-use potential will be limited at the site level. Allowing management objectives to vary across the landscape might, in such cases, be a preferable way to achieve high multi-use potential.

Collaboration


Dive into the Joachim Strengbom's collaboration.

Top Co-Authors

Avatar

Annika Nordin

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Gustaf Granath

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Göran Thor

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Lena Gustafsson

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Mari Jönsson

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Maria Viketoft

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Per-Ola Hedwall

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Pernilla Borgström

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar

Riccardo Bommarco

Swedish University of Agricultural Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge