Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joachim Volk is active.

Publication


Featured researches published by Joachim Volk.


Archives of Oral Biology | 2011

Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP).

Athina Bakopoulou; Gabriele Leyhausen; Joachim Volk; Asterios S. Tsiftsoglou; P. Garefis; Petros Koidis; W. Geurtsen

OBJECTIVE The aim of this study was to compare the in vitro osteo/odontogenic differentiation potential of mesenchymal stem cells (MSCs) derived from the dental pulp (dental pulp stem cells - DPSCs) or the apical papilla (stem cells from the apical papilla - SCAP) of permanent developing teeth. DESIGN DPSCs and SCAP cultures were established from impacted third molars of young healthy donors at the stage of root development. Cultures were analysed for stem cell markers, including STRO-1, CD146, CD34 and CD45 using flow cytometry. Cells were then induced for osteo/odontogenic differentiation by media containing dexamethasone, KH(2)PO(4) and β-glycerophosphate. Cultures were analysed for morphology, growth characteristics, mineralization potential (Alizarin Red method) and differentiation markers (dentine sialophosphoprotein-DSPP, bone sialoprotein-BSP, osteocalcin-OCN, alkaline phosphatase-ALP), using immunocytochemistry and reverse transcriptase-polymerase chain reaction. RESULTS All DPSCs and SCAP cultures were positive for STRO-1, CD146 and CD34, in percentages varying according to cell type and donor, but negative for CD45. Both types of MSCs displayed an active potential for cellular migration, organization and mineralization, producing 3D mineralized structures. These structures progressively expressed differentiation markers, including DSPP, BSP, OCN, ALP, having the characteristics of osteodentin. SCAP, however, showed a significantly higher proliferation rate and mineralization potential, which might be of significance for their use in bone/dental tissue engineering. CONCLUSIONS This study provides evidence that different types of dental MSCs can be used in tissue engineering/regeneration protocols as an approachable stem cell source for osteo/odontogenic differentiation and biomineralization that could be further applied for stem cell-based clinical therapies.


Archives of Oral Biology | 2013

Comparative characterization of STRO-1neg/CD146pos and STRO-1pos/CD146pos apical papilla stem cells enriched with flow cytometry

Athina Bakopoulou; Gabriele Leyhausen; Joachim Volk; Petros Koidis; Werner Geurtsen

OBJECTIVE Stem Cells residing in the Apical Papilla (SCAP) of human permanent teeth represent a promising cell source for dental tissue regeneration. Therefore, the functional and molecular properties of specific subpopulations existing within heterogeneous cultures should be further investigated to give insight whether their selection could be beneficial for targeted therapeutic applications. DESIGN In this study we extensively characterized SCAP cultures established from 10 healthy subjects, as well as their STRO-1(pos/)CD146(pos) and STRO-1(neg/)CD146(pos) subpopulations isolated with fluorescence-activated cell sorting. SCAP were analyzed for embryonic (Nanog, Oct3/4, SSEA-3, TRA-1-60), mesenchymal (STRO-1, CD146/MUC18, CD105/endoglin, CD24, CD90/Thy-1, CD81-TAPA, CD34, CD49f/a6-integrin), neural (CD271/NGFR, nestin) and hematopoietic (CD117/c-kit, CD45) stem cell (SC) markers using flow cytometry. Multipotentiality was evaluated with culture specific staining (Alizarin-Red-S, Oil- Red-O) and RT-PCR analysis for osteo/odontogenic (DSPP, BSP, ALP, osteocalcin, osteonectin, BMP-2, Runx2), adipogenic (lipoprotein-lipase-LPL) and neurogenic (Neurofilament/NFL-L, nestin, β-tubulin-III, NCAM) markers. RESULTS Our results showed that the STRO-1(pos)/CD146(pos) subpopulation demonstrated higher CFU efficiency and much higher expression of several embryonic and mesenchymal SC markers compared to the non-sorted SCAP. They also showed enhanced odontogenic differentiation potential, as evidenced by higher mineralization capacity and expression of osteo/odontogenic markers. By contrast, absence of STRO-1 in the STRO-1(neg)/CD146(pos) subpopulation yielded the opposite results and was associated with significant downgrading of the above-mentioned properties. CONCLUSIONS These results suggest that STRO-1(pos)/CD146(pos) SCAP cells represent a very promising adult MSCs source with enhanced multipotent SC properties that could be easily isolated with simple flow cytometric methods to be used for tissue engineering applications.


Dental Materials | 2012

Effects of resinous monomers on the odontogenic differentiation and mineralization potential of highly proliferative and clonogenic cultured apical papilla stem cells

Athina Bakopoulou; Gabriele Leyhausen; Joachim Volk; Petros Koidis; Werner Geurtsen

OBJECTIVE The aim of this study was to investigate the effects of resinous monomers on the odontogenic differentiation and mineralization potential of apical papilla stem cells (SCAP). METHODS Cultures were established from developing third molars of healthy donors aged 14-18 years-old and were extensively characterized for proliferation rate, colony forming unit efficiency and expression of stem cell markers (STRO-1, CD146, CD34, CD45, CD105, CD117-c-Kit, CD24, CD90, Nanog, Oct3/4), in order to select those with enhanced stem cell and odontogenic differentiation properties. SCAP enriched cultures were then induced for odontogenic differentiation in the continuous presence of low concentrations (0.05-0.5 mM) of the monomers 2-hydroxy-ethyl-methacrylate-HEMA and triethylene-glycol-dimethacrylate-TEGDMA for 3 weeks (long-term exposure). Additionally, the effects of a single exposure (72 h) to higher concentrations of HEMA (2 mM) and TEGDMA (1 mM) were evaluated. RESULTS The results showed that both types of monomer-exposure significantly delayed the odontogenic differentiation and mineralization processes of SCAP cells. A down-regulation followed by recovery in the expression of differentiation markers, including dentin sialophosphoprotein-DSPP, bone sialoprotein-BSP, osteocalcin-OCN and alkaline phosphatase-ALP was recorded. This was accompanied by reduction of the mineralized matrix produced by monomer-treated-compared to non-treated contol cultures. Furthermore, a concentration-dependence was observed for both monomers during long-term exposure, whereas the effects of HEMA were evident at much lower concentrations compared to TEGDMA. SIGNIFICANCE These findings suggest that resinous monomers can delay the odontogenic differentiation of SCAP cells, potentially disturbing the physiological repair and/or developmental processes of human permanent teeth.


Clinical Oral Investigations | 2014

Minor salivary glands of the lips: a novel, easily accessible source of potential stem/progenitor cells

Dimitrios Andreadis; Athina Bakopoulou; Gabriele Leyhausen; Apostolos Epivatianos; Joachim Volk; Markopoulos Ak; Werner Geurtsen

ObjectivesCells with stem/progenitor properties have been detected in major salivary glands, but no data are available on their presence within minor salivary glands (MSGs). This study aimed to isolate and characterize potential stem/progenitor cells from human MSGs.Materials and methodsMSGs of the lower lip were surgically obtained during biopsy for Sjogren’s syndrome investigation that finally proved to be histologically normal. The established MSG cultures were assessed for morphology, proliferation, colony-forming-unit efficiency, multipotentiality, and immunophenotypic characteristics.ResultsA mixed population of fibroblast-like and a few flat-shaped epithelial-like cells was obtained. These cells were capable for osteogenic, adipogenic, and neurogenic differentiation. Evidence for strong stem cell potency was observed by the detection of early stem cell markers, like Nanog, Oct-3/4, and SSEA-3. These cells also expressed characteristic mesenchymal stem cell markers, including CD90-Thy1, CD105, CD49f, CD81, nestin, CD146, and Stro-1, but were negative for CD117/C-KIT, CD45, and CD271/NFG. In addition, positivity for keratins 7/8 in part of the population was indicative of an epithelial phenotype, whereas these cells were negative for aquaporin-1 expressed in acinar/myoepithelial cells during development.ConclusionsBased on these data, a cell population with stem/progenitor characteristics was primarily isolated from labial MSGs. The morphologic and immunophenotypic features indicated that this population is mixed with mesenchymal (mainly) and epithelial characteristics.Clinical relevanceDue to their large number and superficial distribution in labial mucosa, MSGs may be proposed as a potential easily accessible source of adult stem/progenitor cells for regenerative therapies of glandular organs with parenchymal pathology.


Journal of Endodontics | 2015

Effects of alendronate on osteoclast formation and activity in vitro.

Caroline A. Martins; Gabriele Leyhausen; Joachim Volk; Werner Geurtsen

INTRODUCTION Root resorption is a common complication after replantation following traumatic dental avulsion. Endodontic therapy combined with local and intracanal medications aims to avoid osteoclastic activity. In such cases, the application of alendronate (ALN), a bisphosphonate widely used for the treatment of bone disorders, could be of clinical relevance. This study evaluated alendronate biocompatibility on periodontal ligament cells as well as its effects on an in vitro osteoclastogenesis model. METHODS Alendronate cytotoxicity (10(-3) to 10(-9) mol/L) in human periodontal ligament fibroblasts, human osteogenic sarcoma cells, and murine osteoclastic precursors (RAW 264.7) was analyzed using cell number determination, cell viability, and proliferation assays. ALN (10(-6) to 10(-12) mol/L) effects on RANKL-induced osteoclastogenesis of RAW cells were assessed by tartrate-resistant acid phosphatase (TRAP) staining and activity and real-time polymerase chain reaction. RESULTS ALN at higher concentrations was cytotoxic for all cell types, inhibiting significantly the proliferation of human osteogenic sarcoma cells and human periodontal ligament fibroblasts (≥10(-5) mol/L). TRAP activity and expression of the osteoclast markers TRAP and cathepsin K by RAW-derived osteoclasts decreased significantly with ALN at low concentrations, reaching the maximum effect at 10(-10) mol/L. CONCLUSIONS We showed that ALN at very low concentrations is an effective inhibitor of RANKL-generated osteoclasts, without causing cytotoxic effects on their precursors or periapical cells. ALN at such concentrations might be useful to prevent replacement resorption in avulsed teeth.


Dental Materials | 2012

Intracellular glutathione: A main factor in TEGDMA-induced cytotoxicity?

Caroline A. Martins; Gabriele Leyhausen; Werner Geurtsen; Joachim Volk

OBJECTIVE To evaluate whether the reduction/prevention of triethylene glycol dimethacrylate (TEGDMA)-induced decrease of intracellular glutathione (GSH) protects human periodontal ligament fibroblasts (HPLF) against cell death. METHODS HPLF were preincubated for 30 min with exogenous GSH and then treated with TEGDMA (2.5 mM) with/without GSH (0.5-2.5-5 mM) for the following incubation exposure types: 6h (GI); 6h followed by 18 h recovery time in presence (GII) or absence (GIII) of exogenous GSH; 24 h without recovery time (GIV). TEGDMA-cytotoxicity and intracellular glutathione were assessed by Hoechst 33342 and monobromobimane (MBBr) assays. Data were statistically analyzed with Bonferroni ANOVA (p<0.05). RESULTS Preincubation with exogenous GSH increased the intracellular GSH-concentration. TEGDMA was cytotoxic at all treatment times except at 6h (GI) (94±7% of control). In GII the treatment with TEGDMA alone (59±7%) showed no different results to cultures exposed to TEGDMA and GSH. Exogenous GSH had no effect on the TEGDMA-induced cytotoxicity also in the GIII and GIV. Thus, a combined incubation with GSH did not prevent the cytotoxicity of TEGDMA, despite of a significant increase of intracellular GSH-concentration in the presence of exogenously supplied GSH. SIGNIFICANCE The glutathione-decreasing effect of TEGDMA is not the major cause of TEGDMA-induced cytotoxicity, indicating more complex mechanisms, which are causative for TEGDMA-cytotoxicity in HPLF.


Stem Cell Research & Therapy | 2017

Isolation and prolonged expansion of oral mesenchymal stem cells under clinical-grade, GMP-compliant conditions differentially affects “stemness” properties

Athina Bakopoulou; Danae Apatzidou; Eleni Aggelidou; Evangelia Gousopoulou; Gabriele Leyhausen; Joachim Volk; Aristeidis Kritis; Petros Koidis; Werner Geurtsen

BackgroundDevelopment of clinical-grade cell preparations is central to meeting the regulatory requirements for cellular therapies under good manufacturing practice-compliant (cGMP) conditions. Since addition of animal serum in culture media may compromise safe and efficient expansion of mesenchymal stem cells (MSCs) for clinical use, this study aimed to investigate the potential of two serum/xeno-free, cGMP culture systems to maintain long-term “stemness” of oral MSCs (dental pulp stem cells (DPSCs) and alveolar bone marrow MSCs (aBMMSCs)), compared to conventional serum-based expansion.MethodsDPSC and aBMMSC cultures (n = 6/cell type) were established from pulp and alveolar osseous biopsies respectively. Three culture systems were used: StemPro_MSC/SFM_XenoFree (Life Technologies); StemMacs_MSC/XF (Miltenyi Biotek); and α-MEM (Life Technologies) with 15% fetal bovine serum. Growth (population doublings (PDs)), immunophenotypic (flow cytometric analysis of MSC markers) and senescence (β-galactosidase (SA-β-gal) activity; telomere length) characteristics were determined during prolonged expansion. Gene expression patterns of osteogenic (ALP, BMP-2), adipogenic (LPL, PPAR-γ) and chondrogenic (ACAN, SOX-9) markers and maintenance of multilineage differentiation potential were determined by real-time PCR.ResultsSimilar isolation efficiency and stable growth dynamics up to passage 10 were observed for DPSCs under all expansion conditions. aBMMSCs showed lower cumulative PDs compared to DPSCs, and when StemMacs was used substantial delays in cell proliferation were noted after passages 6–7. Serum/xeno-free expansion produced cultures with homogeneous spindle-shaped phenotypes, while serum-based expansion preserved differential heterogeneous characteristics of each MSC population. Prolonged expansion of both MSC types but in particular the serum/xeno-free-expanded aBMMSCs was associated with downregulation of CD146, CD105, Stro-1, SSEA-1 and SSEA-4, but not CD90, CD73 and CD49f, in parallel with an increase of SA-gal-positive cells, cell size and granularity and a decrease in telomere length. Expansion under both serum-free systems resulted in “osteogenic pre-disposition”, evidenced by upregulation of osteogenic markers and elimination of chondrogenic and adipogenic markers, while serum-based expansion produced only minor changes. DPSCs retained a diminishing (CCM, StemPro) or increasing (StemMacs) mineralization potential with passaging, while aBMMSCs lost this potential after passages 6–7 under all expansion conditions.ConclusionsThese findings indicate there is still a vacant role for development of qualified protocols for clinical-grade expansion of oral MSCs; a key milestone achievement for translation of research from the bench to clinics.


Dental Materials | 2015

Genotoxic effects of camphorquinone and DMT on human oral and intestinal cells.

Miriam Wessels; Julia Rimkus; Gabriele Leyhausen; Joachim Volk; Werner Geurtsen

OBJECTIVE Released components of oral biomaterials can leach into the oral cavity and may subsequently reach the gastrointestinal tract. Camphorquinone (CQ) is the most common used photoinitiator in resinous restorative materials and is often combined with the co-initiator N,N-dimethyl-p-toluidine (DMT). It has been shown that CQ exerts cytotoxic effects, at least partially due to the generation of reactive oxygen species (ROS). Objective of this study was to examine the cytotoxic and genotoxic potential of CQ in human oral keratinocytes (OKF6/TERT2) and immortalized epithelial colorectal adenocarcinoma cells (Caco-2). Furthermore, the effects of visible-light irradiation and the co-initiator DMT were investigated as well as the generation of ROS, the potential protective effect of glutathione (GSH) and a recovery period of CQ-treated Caco-2 cells. METHODS The alkaline comet assay was used to determine DNA damage. Additionally, an enzyme modified comet assay was applied, which detects 7,8-dihydro-8-oxoguanine (8-oxoguanine), a reliable marker for oxidative stress. RESULTS Our data revealed that high concentrations of CQ induced DNA lesions in OKF6/TERT2 cells. This DNA damage is at least partly caused by the generation of 8-oxoguanine. In addition, CQ and DMT increased ROS formation and induced DNA damage in Caco-2 cells. CQ-treatment resulted in generation of 8-oxoguanine. The antioxidant GSH efficiently prevented CQ-associated DNA damage. Furthermore, a recovery following CQ-treatment significantly reduced DNA damage. SIGNIFICANCE We conclude that CQ-induced DNA damage is caused by oxidative stress in oral and intestinal cells. These lesions can be prevented and possibly repaired by GSH-treatment and recovery of cells after the photoinitiator is removed from cultures.


Dental Materials | 2018

Cytotoxic and genotoxic potential of the type I photoinitiators BAPO and TPO on human oral keratinocytes and V79 fibroblasts

Marina Popal; Joachim Volk; Gabriele Leyhausen; Werner Geurtsen

OBJECTIVES Phenylbis(acyl) phosphine oxide (BAPO) and diphenyl(acyl) phosphine oxide (TPO) are alternative photoinitiators to camphorquinone (CQ) in dental resinous materials. Aim of this study was to investigate their cytotoxic/genotoxic potential in human oral keratinocytes (OKF6/Tert2) and Chinese hamster lung fibroblasts (V79) in comparison to CQ. METHODS Cells were exposed to different concentrations of BAPO and TPO (1-50μM). Cytotoxicity was evaluated using H33342 and MTT assay, cell proliferation by BrdU proliferation assay and microscopy. Effects on cellular redox homeostasis were assessed by detecting intracellular levels of reactive oxygen/nitrogen species (ROS/RNS) using the DCFH2 assay and by quantification of mRNA expression of oxidatively regulated, cyto-protective enzymes. Genotoxic potential was determined by use of micronucleus (MN) assay. RESULTS BAPO and TPO induced a concentration-dependent decrease of cell number. BAPO and TPO showed 50- to 250-fold higher cytotoxicity than CQ. In contrast to CQ, both photoinitiators revealed no increase of intracellular ROS/RNS. However, BAPO (10μM) at least significantly induced mRNA-expression of redox-regulated proteins after 24h similar to 2.5mM CQ. Additionally, BAPO significantly raised the number of micronuclei, but only in V79 cells (10μM: 12±1, 2.5mM CQ: 15±1, medium control: 6±3). However, it also significantly decreased proliferation of these cells (10μM BAPO: 19.8%±7.3% compared to controls). SIGNIFICANCE BAPO and TPO revealed concentration-dependent cytotoxic effects in human oral keratinocytes and V79 cells. However, in contrast to CQ, no generation of intracellular ROS/RNS was found. Only BAPO induced genotoxicity in V79 cells.


Journal of Biomedical Materials Research Part B | 2005

ROS formation and glutathione levels in human oral fibroblasts exposed to TEGDMA and camphorquinone

J. Engelmann; Joachim Volk; Gabriele Leyhausen; Werner Geurtsen

Collaboration


Dive into the Joachim Volk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Athina Bakopoulou

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

Petros Koidis

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Asterios S. Tsiftsoglou

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar

P. Garefis

Aristotle University of Thessaloniki

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge