Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joachim Weischenfeldt is active.

Publication


Featured researches published by Joachim Weischenfeldt.


Nature | 2012

Dissecting the genomic complexity underlying medulloblastoma

David T. W. Jones; Natalie Jäger; Marcel Kool; Thomas Zichner; Barbara Hutter; Marc Sultan; Yoon-Jae Cho; Trevor J. Pugh; Volker Hovestadt; Adrian M. Stütz; Tobias Rausch; Hans-Jörg Warnatz; Marina Ryzhova; Sebastian Bender; Dominik Sturm; Sabrina Pleier; Huriye Cin; Elke Pfaff; Laura Sieber; Andrea Wittmann; Marc Remke; Hendrik Witt; Sonja Hutter; Theophilos Tzaridis; Joachim Weischenfeldt; Benjamin Raeder; Meryem Avci; Vyacheslav Amstislavskiy; Marc Zapatka; Ursula Weber

Medulloblastoma is an aggressively growing tumour, arising in the cerebellum or medulla/brain stem. It is the most common malignant brain tumour in children, and shows tremendous biological and clinical heterogeneity. Despite recent treatment advances, approximately 40% of children experience tumour recurrence, and 30% will die from their disease. Those who survive often have a significantly reduced quality of life. Four tumour subgroups with distinct clinical, biological and genetic profiles are currently identified. WNT tumours, showing activated wingless pathway signalling, carry a favourable prognosis under current treatment regimens. SHH tumours show hedgehog pathway activation, and have an intermediate prognosis. Group 3 and 4 tumours are molecularly less well characterized, and also present the greatest clinical challenges. The full repertoire of genetic events driving this distinction, however, remains unclear. Here we describe an integrative deep-sequencing analysis of 125 tumour–normal pairs, conducted as part of the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. Tetraploidy was identified as a frequent early event in Group 3 and 4 tumours, and a positive correlation between patient age and mutation rate was observed. Several recurrent mutations were identified, both in known medulloblastoma-related genes (CTNNB1, PTCH1, MLL2, SMARCA4) and in genes not previously linked to this tumour (DDX3X, CTDNEP1, KDM6A, TBR1), often in subgroup-specific patterns. RNA sequencing confirmed these alterations, and revealed the expression of what are, to our knowledge, the first medulloblastoma fusion genes identified. Chromatin modifiers were frequently altered across all subgroups. These findings enhance our understanding of the genomic complexity and heterogeneity underlying medulloblastoma, and provide several potential targets for new therapeutics, especially for Group 3 and 4 patients.


CSH Protocols | 2008

Bone Marrow-Derived Macrophages (BMM): Isolation and Applications

Joachim Weischenfeldt; Bo T. Porse

INTRODUCTIONBone marrow-derived macrophages (BMM) are primary macrophage cells, derived from bone marrow cells in vitro in the presence of growth factors. Macrophage colony-stimulating factor (M-CSF) is a lineage-specific growth factor that is responsible for the proliferation and differentiation of committed myeloid progenitors into cells of the macrophage/monocyte lineage. Mice lacking functional M-CSF are deficient in macrophages and osteoclasts and suffer from osteopetrosis. In this protocol, bone marrow cells are grown in culture dishes in the presence of M-CSF, which is secreted by L929 cells and is used in the form of L929-conditioned medium. Under these conditions, the bone marrow monocyte/macrophage progenitors will proliferate and differentiate into a homogenous population of mature BMMs. The efficiency of the differentiation is assessed using fluorescence-activated cell sorting (FACS) analysis of Mac-1 and 4/80 surface antigen expression. Once differentiated, the BMMs are suitable for numerous types of experimental manipulations, including morphological, gene expression, and physiological studies. For example, phagocytic cells such as macrophages have a unique ability to ingest microbes. We describe a test for the phagocytic efficiency of BMMs by exposing them to fluorescently labeled yeast zymosan bioparticles. Also, a method to deliver DNA or small interfering RNAs (siRNAs) into these hard-to-transfect cells is described. Finally, the proliferation of the BMMs is assayed using carboxyfluorescein succinimidyl ester (CFSE), a fluorescein derivative that partitions equally between daughter cells after cell division.


Nature Reviews Genetics | 2013

Phenotypic impact of genomic structural variation: insights from and for human disease

Joachim Weischenfeldt; Orsolya Symmons; François Spitz; Jan O. Korbel

Genomic structural variants have long been implicated in phenotypic diversity and human disease, but dissecting the mechanisms by which they exert their functional impact has proven elusive. Recently however, developments in high-throughput DNA sequencing and chromosomal engineering technology have facilitated the analysis of structural variants in human populations and model systems in unprecedented detail. In this Review, we describe how structural variants can affect molecular and cellular processes, leading to complex organismal phenotypes, including human disease. We further present advances in delineating disease-causing elements that are affected by structural variants, and we discuss future directions for research on the functional consequences of structural variants.


Genes & Development | 2008

NMD is essential for hematopoietic stem and progenitor cells and for eliminating by-products of programmed DNA rearrangements

Joachim Weischenfeldt; Inge Damgaard; David Bryder; Kim Theilgaard-Mönch; Lina Thorén; Finn Cilius Nielsen; Sten Eirik W. Jacobsen; Claus Nerlov; Bo T. Porse

Nonsense-mediated mRNA decay (NMD) is a post-transcriptional surveillance process that eliminates mRNAs containing premature termination codons (PTCs). NMD has been hypothesized to impact on several aspects of cellular function; however, its importance in the context of a mammalian organism has not been addressed in detail. Here we use mouse genetics to demonstrate that hematopoietic-specific deletion of Upf2, a core NMD factor, led to the rapid, complete, and lasting cell-autonomous extinction of all hematopoietic stem and progenitor populations. In contrast, more differentiated cells were only mildly affected in Upf2-null mice, suggesting that NMD is mainly essential for proliferating cells. Furthermore, we show that UPF2 loss resulted in the accumulation of nonproductive rearrangement by-products from the Tcrb locus and that this, as opposed to the general loss of NMD, was particularly detrimental to developing T-cells. At the molecular level, gene expression analysis showed that Upf2 deletion led to a profound skewing toward up-regulated mRNAs, highly enriched in transcripts derived from processed pseudogenes, and that NMD impacts on regulated alternative splicing events. Collectively, our data demonstrate a unique requirement of NMD for organismal survival.


Genome Biology | 2012

Mammalian tissues defective in nonsense-mediated mRNA decay display highly aberrant splicing patterns.

Joachim Weischenfeldt; Johannes Waage; Geng Tian; Jing Zhao; Inge Damgaard; Janus S. Jakobsen; Karsten Kristiansen; Anders Krogh; Jun Wang; Bo T. Porse

BackgroundNonsense-mediated mRNA decay (NMD) affects the outcome of alternative splicing by degrading mRNA isoforms with premature termination codons. Splicing regulators constitute important NMD targets; however, the extent to which loss of NMD causes extensive deregulation of alternative splicing has not previously been assayed in a global, unbiased manner. Here, we combine mouse genetics and RNA-seq to provide the first in vivo analysis of the global impact of NMD on splicing patterns in two primary mouse tissues ablated for the NMD factor UPF2.ResultsWe developed a bioinformatic pipeline that maps RNA-seq data to a combinatorial exon database, predicts NMD-susceptibility for mRNA isoforms and calculates the distribution of major splice isoform classes. We present a catalog of NMD-regulated alternative splicing events, showing that isoforms of 30% of all expressed genes are upregulated in NMD-deficient cells and that NMD targets all major splicing classes. Importantly, NMD-dependent effects are not restricted to premature termination codon+ isoforms but also involve an abundance of splicing events that do not generate premature termination codons. Supporting their functional importance, the latter events are associated with high intronic conservation.ConclusionsOur data demonstrate that NMD regulates alternative splicing outcomes through an intricate web of splicing regulators and that its loss leads to the deregulation of a panoply of splicing events, providing novel insights into its role in core- and tissue-specific regulation of gene expression. Thus, our study extends the importance of NMD from an mRNA quality pathway to a regulator of several layers of gene expression.


Nature | 2017

The whole-genome landscape of medulloblastoma subtypes

Paul A. Northcott; Ivo Buchhalter; A. Sorana Morrissy; Volker Hovestadt; Joachim Weischenfeldt; Tobias Ehrenberger; Susanne Gröbner; Maia Segura-Wang; Thomas Zichner; Vasilisa A. Rudneva; Hans-Jörg Warnatz; Nikos Sidiropoulos; Aaron H. Phillips; Steven E. Schumacher; Kortine Kleinheinz; Sebastian M. Waszak; Serap Erkek; David Jones; Barbara C. Worst; Marcel Kool; Marc Zapatka; Natalie Jäger; Lukas Chavez; Barbara Hutter; Matthias Bieg; Nagarajan Paramasivam; Michael Heinold; Zuguang Gu; Naveed Ishaque; Christina Jäger-Schmidt

Current therapies for medulloblastoma, a highly malignant childhood brain tumour, impose debilitating effects on the developing child, and highlight the need for molecularly targeted treatments with reduced toxicity. Previous studies have been unable to identify the full spectrum of driver genes and molecular processes that operate in medulloblastoma subgroups. Here we analyse the somatic landscape across 491 sequenced medulloblastoma samples and the molecular heterogeneity among 1,256 epigenetically analysed cases, and identify subgroup-specific driver alterations that include previously undiscovered actionable targets. Driver mutations were confidently assigned to most patients belonging to Group 3 and Group 4 medulloblastoma subgroups, greatly enhancing previous knowledge. New molecular subtypes were differentially enriched for specific driver events, including hotspot in-frame insertions that target KBTBD4 and ‘enhancer hijacking’ events that activate PRDM6. Thus, the application of integrative genomics to an extensive cohort of clinical samples derived from a single childhood cancer entity revealed a series of cancer genes and biologically relevant subtype diversity that represent attractive therapeutic targets for the treatment of patients with medulloblastoma.


Nature Communications | 2015

Exome sequencing of osteosarcoma reveals mutation signatures reminiscent of BRCA deficiency

Michal Kovac; Claudia Blattmann; Sebastian Ribi; Jan Smida; Nikola S. Mueller; Florian Engert; Francesc Castro-Giner; Joachim Weischenfeldt; Monika Kováčová; Andreas H. Krieg; Dimosthenis Andreou; Per-Ulf Tunn; Hans Roland Dürr; Hans Rechl; Klaus-Dieter Schaser; I. Melcher; Stefan Burdach; Andreas E. Kulozik; Katja Specht; Karl Heinimann; Simone Fulda; Stefan S. Bielack; Gernot Jundt; Ian Tomlinson; Jan O. Korbel; Michaela Nathrath; Daniel Baumhoer

Osteosarcomas are aggressive bone tumours with a high degree of genetic heterogeneity, which has historically complicated driver gene discovery. Here we sequence exomes of 31 tumours and decipher their evolutionary landscape by inferring clonality of the individual mutation events. Exome findings are interpreted in the context of mutation and SNP array data from a replication set of 92 tumours. We identify 14 genes as the main drivers, of which some were formerly unknown in the context of osteosarcoma. None of the drivers is clearly responsible for the majority of tumours and even TP53 mutations are frequently mapped into subclones. However, >80% of osteosarcomas exhibit a specific combination of single-base substitutions, LOH, or large-scale genome instability signatures characteristic of BRCA1/2-deficient tumours. Our findings imply that multiple oncogenic pathways drive chromosomal instability during osteosarcoma evolution and result in the acquisition of BRCA-like traits, which could be therapeutically exploited.


Nature Genetics | 2017

Pan-cancer analysis of somatic copy-number alterations implicates IRS4 and IGF2 in enhancer hijacking

Joachim Weischenfeldt; Taronish D. Dubash; Alexandros P Drainas; Balca R. Mardin; Yuanyuan Chen; Adrian M. Stütz; Sebastian M. Waszak; Graziella Bosco; Ann Rita Halvorsen; Benjamin Raeder; Theocharis Efthymiopoulos; Serap Erkek; Christine Siegl; Hermann Brenner; Odd Terje Brustugun; Sebastian M. Dieter; Paul A. Northcott; Iver Petersen; Stefan M. Pfister; Martin Schneider; Steinar Solberg; Erik Thunissen; Wilko Weichert; Thomas Zichner; Roman K. Thomas; Martin Peifer; Åslaug Helland; Claudia R. Ball; Martin Jechlinger; Rocio Sotillo

Extensive prior research focused on somatic copy-number alterations (SCNAs) affecting cancer genes, yet the extent to which recurrent SCNAs exert their influence through rearrangement of cis-regulatory elements (CREs) remains unclear. Here we present a framework for inferring cancer-related gene overexpression resulting from CRE reorganization (e.g., enhancer hijacking) by integrating SCNAs, gene expression data and information on topologically associating domains (TADs). Analysis of 7,416 cancer genomes uncovered several pan-cancer candidate genes, including IRS4, SMARCA1 and TERT. We demonstrate that IRS4 overexpression in lung cancer is associated with recurrent deletions in cis, and we present evidence supporting a tumor-promoting role. We additionally pursued cancer-type-specific analyses and uncovered IGF2 as a target for enhancer hijacking in colorectal cancer. Recurrent tandem duplications intersecting with a TAD boundary mediate de novo formation of a 3D contact domain comprising IGF2 and a lineage-specific super-enhancer, resulting in high-level gene activation. Our framework enables systematic inference of CRE rearrangements mediating dysregulation in cancer.


Molecular Systems Biology | 2015

A cell‐based model system links chromothripsis with hyperploidy

Balca R. Mardin; Alexandros P Drainas; Sebastian M. Waszak; Joachim Weischenfeldt; Mayumi Isokane; Adrian M. Stütz; Benjamin Raeder; Theocharis Efthymiopoulos; Christopher Buccitelli; Maia Segura-Wang; Paul A. Northcott; Stefan M. Pfister; Peter Lichter; Jan Ellenberg; Jan O. Korbel

A remarkable observation emerging from recent cancer genome analyses is the identification of chromothripsis as a one‐off genomic catastrophe, resulting in massive somatic DNA structural rearrangements (SRs). Largely due to lack of suitable model systems, the mechanistic basis of chromothripsis has remained elusive. We developed an integrative method termed “complex alterations after selection and transformation (CAST),” enabling efficient in vitro generation of complex DNA rearrangements including chromothripsis, using cell perturbations coupled with a strong selection barrier followed by massively parallel sequencing. We employed this methodology to characterize catastrophic SR formation processes, their temporal sequence, and their impact on gene expression and cell division. Our in vitro system uncovered a propensity of chromothripsis to occur in cells with damaged telomeres, and in particular in hyperploid cells. Analysis of primary medulloblastoma cancer genomes verified the link between hyperploidy and chromothripsis in vivo. CAST provides the foundation for mechanistic dissection of complex DNA rearrangement processes.


PLOS ONE | 2010

UPF2 Is a Critical Regulator of Liver Development, Function and Regeneration

Lina A. Thoren; Gitte A. Nørgaard; Joachim Weischenfeldt; Johannes Waage; Janus S. Jakobsen; Inge Damgaard; Frida C. Bergström; Anna M. Blom; Rehannah Borup; Hanne Cathrine Bisgaard; Bo T. Porse

Background Nonsense-mediated mRNA decay (NMD) is a post-transcriptional RNA surveillance process that facilitates the recognition and destruction of mRNAs bearing premature terminations codons (PTCs). Such PTC-containing (PTC+) mRNAs may arise from different processes, including erroneous processing and expression of pseudogenes, but also from more regulated events such as alternative splicing coupled NMD (AS-NMD). Thus, the NMD pathway serves both as a silencer of genomic noise and a regulator of gene expression. Given the early embryonic lethality in NMD deficient mice, uncovering the full regulatory potential of the NMD pathway in mammals will require the functional assessment of NMD in different tissues. Methodology/Principal Findings Here we use mouse genetics to address the role of UPF2, a core NMD component, in the development, function and regeneration of the liver. We find that loss of NMD during fetal liver development is incompatible with postnatal life due to failure of terminal differentiation. Moreover, deletion of Upf2 in the adult liver results in hepatosteatosis and disruption of liver homeostasis. Finally, NMD was found to be absolutely required for liver regeneration. Conclusion/Significance Collectively, our data demonstrate the critical role of the NMD pathway in liver development, function and regeneration and highlights the importance of NMD for mammalian biology.

Collaboration


Dive into the Joachim Weischenfeldt's collaboration.

Top Co-Authors

Avatar

Jan O. Korbel

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adrian M. Stütz

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Zichner

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Tobias Rausch

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo T. Porse

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge