Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joacim Rocklöv is active.

Publication


Featured researches published by Joacim Rocklöv.


The Lancet | 2015

Mortality risk attributable to high and low ambient temperature: a multicountry observational study.

Antonio Gasparrini; Yuming Guo; Masahiro Hashizume; Eric Lavigne; Antonella Zanobetti; Joel Schwartz; Aurelio Tobías; Shilu Tong; Joacim Rocklöv; Bertil Forsberg; Michela Leone; Manuela De Sario; Michelle L. Bell; Yueliang Leon Guo; Chang-Fu Wu; Haidong Kan; Seung-Muk Yi; Micheline de Sousa Zanotti Stagliorio Coelho; Paulo Hilário Nascimento Saldiva; Yasushi Honda; Ho Kim; Ben Armstrong

Summary Background Although studies have provided estimates of premature deaths attributable to either heat or cold in selected countries, none has so far offered a systematic assessment across the whole temperature range in populations exposed to different climates. We aimed to quantify the total mortality burden attributable to non-optimum ambient temperature, and the relative contributions from heat and cold and from moderate and extreme temperatures. Methods We collected data for 384 locations in Australia, Brazil, Canada, China, Italy, Japan, South Korea, Spain, Sweden, Taiwan, Thailand, UK, and USA. We fitted a standard time-series Poisson model for each location, controlling for trends and day of the week. We estimated temperature–mortality associations with a distributed lag non-linear model with 21 days of lag, and then pooled them in a multivariate metaregression that included country indicators and temperature average and range. We calculated attributable deaths for heat and cold, defined as temperatures above and below the optimum temperature, which corresponded to the point of minimum mortality, and for moderate and extreme temperatures, defined using cutoffs at the 2·5th and 97·5th temperature percentiles. Findings We analysed 74 225 200 deaths in various periods between 1985 and 2012. In total, 7·71% (95% empirical CI 7·43–7·91) of mortality was attributable to non-optimum temperature in the selected countries within the study period, with substantial differences between countries, ranging from 3·37% (3·06 to 3·63) in Thailand to 11·00% (9·29 to 12·47) in China. The temperature percentile of minimum mortality varied from roughly the 60th percentile in tropical areas to about the 80–90th percentile in temperate regions. More temperature-attributable deaths were caused by cold (7·29%, 7·02–7·49) than by heat (0·42%, 0·39–0·44). Extreme cold and hot temperatures were responsible for 0·86% (0·84–0·87) of total mortality. Interpretation Most of the temperature-related mortality burden was attributable to the contribution of cold. The effect of days of extreme temperature was substantially less than that attributable to milder but non-optimum weather. This evidence has important implications for the planning of public-health interventions to minimise the health consequences of adverse temperatures, and for predictions of future effect in climate-change scenarios. Funding UK Medical Research Council.


Arthritis & Rheumatism | 2010

Up-regulation of cytokines and chemokines predates the onset of rheumatoid arthritis

Heidi Kokkonen; Ingegerd Söderström; Joacim Rocklöv; Göran Hallmans; Kristina Lejon; Solbritt Rantapää Dahlqvist

OBJECTIVE To identify whether cytokines, cytokine-related factors, and chemokines are up-regulated prior to the development of rheumatoid arthritis (RA). METHODS A nested case-control study was performed in 86 individuals who had donated blood samples before experiencing any symptoms of disease (pre-patients) and 256 matched control subjects (1:3 ratio). In 69 of the pre-patients, blood samples were also obtained at the time of the diagnosis of RA. The plasma levels of 30 cytokines, related factors, and chemokines were measured using a multiplex system. RESULTS The levels of several of the cytokines, cytokine receptors, and chemokines were significantly increased in individuals before disease onset compared with the levels in control subjects; i.e., those representing signs of general immune activation (interleukin-1beta [IL-1beta], IL-2, IL-6, IL-1 receptor antagonist, and tumor necrosis factor), activation of Th1 cells (interferon-gamma, IL-12), Th2 cells (IL-4, eotaxin), Treg cells (IL-10), bone marrow-derived factors (IL-7, granulocyte-macrophage colony-stimulating factor, and granulocyte colony-stimulating factor), as well as chemokines (monocyte chemotactic protein 1 and macrophage inflammatory protein 1alpha). The levels were particularly increased in anti-cyclic citrullinated peptide antibody- and rheumatoid factor-positive individuals, and the concentration of most of these increased further after disease onset. The concentration of IL-17 in individuals before disease onset was significantly higher than that in patients after disease onset. Individuals in whom RA subsequently developed were discriminated from control subjects mainly by the presence of Th1 cells, Th2 cells, and Treg cell-related cytokines, while chemokines, stromal cell-derived cytokines, and angiogenic-related markers separated patients after the development of RA from individuals before the onset of RA. CONCLUSION Individuals in whom RA later developed had significantly increased levels of several cytokines, cytokine-related factors, and chemokines representing the adaptive immune system (Th1, Th2, and Treg cell-related factors); after disease onset, the involvement and activation of the immune system was more general and widespread.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Impact of climate change on global malaria distribution

Cyril Caminade; Sari Kovats; Joacim Rocklöv; Adrian M. Tompkins; Andrew P. Morse; Felipe J. Colón-González; Hans Stenlund; Pim Martens; Simon J. Lloyd

Significance This study is the first multimalaria model intercomparison exercise. This is carried out to estimate the impact of future climate change and population scenarios on malaria transmission at global scale and to provide recommendations for the future. Our results indicate that future climate might become more suitable for malaria transmission in the tropical highland regions. However, other important socioeconomic factors such as land use change, population growth and urbanization, migration changes, and economic development will have to be accounted for in further details for future risk assessments. Malaria is an important disease that has a global distribution and significant health burden. The spatial limits of its distribution and seasonal activity are sensitive to climate factors, as well as the local capacity to control the disease. Malaria is also one of the few health outcomes that has been modeled by more than one research group and can therefore facilitate the first model intercomparison for health impacts under a future with climate change. We used bias-corrected temperature and rainfall simulations from the Coupled Model Intercomparison Project Phase 5 climate models to compare the metrics of five statistical and dynamical malaria impact models for three future time periods (2030s, 2050s, and 2080s). We evaluated three malaria outcome metrics at global and regional levels: climate suitability, additional population at risk and additional person-months at risk across the model outputs. The malaria projections were based on five different global climate models, each run under four emission scenarios (Representative Concentration Pathways, RCPs) and a single population projection. We also investigated the modeling uncertainty associated with future projections of populations at risk for malaria owing to climate change. Our findings show an overall global net increase in climate suitability and a net increase in the population at risk, but with large uncertainties. The model outputs indicate a net increase in the annual person-months at risk when comparing from RCP2.6 to RCP8.5 from the 2050s to the 2080s. The malaria outcome metrics were highly sensitive to the choice of malaria impact model, especially over the epidemic fringes of the malaria distribution.


PLOS ONE | 2014

Vectorial Capacity of Aedes aegypti: Effects of Temperature and Implications for Global Dengue Epidemic Potential

Jing Liu-Helmersson; Hans Stenlund; Annelies Wilder-Smith; Joacim Rocklöv

Dengue is a mosquito-borne viral disease that occurs mainly in the tropics and subtropics but has a high potential to spread to new areas. Dengue infections are climate sensitive, so it is important to better understand how changing climate factors affect the potential for geographic spread and future dengue epidemics. Vectorial capacity (VC) describes a vectors propensity to transmit dengue taking into account human, virus, and vector interactions. VC is highly temperature dependent, but most dengue models only take mean temperature values into account. Recent evidence shows that diurnal temperature range (DTR) plays an important role in influencing the behavior of the primary dengue vector Aedes aegypti. In this study, we used relative VC to estimate dengue epidemic potential (DEP) based on the temperature and DTR dependence of the parameters of A. aegypti. We found a strong temperature dependence of DEP; it peaked at a mean temperature of 29.3°C when DTR was 0°C and at 20°C when DTR was 20°C. Increasing average temperatures up to 29°C led to an increased DEP, but temperatures above 29°C reduced DEP. In tropical areas where the mean temperatures are close to 29°C, a small DTR increased DEP while a large DTR reduced it. In cold to temperate or extremely hot climates where the mean temperatures are far from 29°C, increasing DTR was associated with increasing DEP. Incorporating these findings using historical and predicted temperature and DTR over a two hundred year period (1901–2099), we found an increasing trend of global DEP in temperate regions. Small increases in DEP were observed over the last 100 years and large increases are expected by the end of this century in temperate Northern Hemisphere regions using climate change projections. These findings illustrate the importance of including DTR when mapping DEP based on VC.


Environmental Research | 2012

Cold and heat waves in the United States.

Adrian G. Barnett; Shakoor Hajat; Antonio Gasparrini; Joacim Rocklöv

Extreme cold and heat waves, characterized by a number of cold or hot days in succession, place a strain on peoples cardiovascular and respiratory systems. The increase in deaths due to these waves may be greater than that predicted by extreme temperatures alone. We examined cold and heat waves in 99 US cities for 14 years (1987-2000) and investigated how the risk of death depended on the temperature threshold used to define a wave, and a waves timing, duration and intensity. We defined cold and heat waves using temperatures above and below cold and heat thresholds for two or more days. We tried five cold thresholds using the first to fifth percentiles of temperature, and five heat thresholds using the 95-99 percentiles. The extra wave effects were estimated using a two-stage model to ensure that their effects were estimated after removing the general effects of temperature. The increases in deaths associated with cold waves were generally small and not statistically significant, and there was even evidence of a decreased risk during the coldest waves. Heat waves generally increased the risk of death, particularly for the hottest heat threshold. Cold waves of a colder intensity or longer duration were not more dangerous. Cold waves earlier in the cool season were more dangerous, as were heat waves earlier in the warm season. In general there was no increased risk of death during cold waves above the known increased risk associated with cold temperatures. Cold or heat waves earlier in the cool or warm season may be more dangerous because of a build up in the susceptible pool or a lack of preparedness for extreme temperatures.


PLOS ONE | 2011

Short Term Effects of Weather on Hand, Foot and Mouth Disease

Yien Ling Hii; Joacim Rocklöv; Nawi Ng

Background Hand, foot, and mouth disease (HFMD) outbreaks leading to clinical and fatal complications have increased since late 1990s; especially in the Asia Pacific Region. Outbreaks of HFMD peaks in the warmer season of the year, but the underlying factors for this annual pattern and the reasons to the recent upsurge trend have not yet been established. This study analyzed the effect of short-term changes in weather on the incidence of HFMD in Singapore. Methods The relative risks between weekly HFMD cases and temperature and rainfall were estimated for the period 2001–2008 using time series Poisson regression models allowing for over-dispersion. Smoothing was used to allow non-linear relationship between weather and weekly HFMD cases, and to adjust for seasonality and long-term time trend. Additionally, autocorrelation was controlled and weather was allowed to have a lagged effect on HFMD incidence up to 2 weeks. Results Weekly temperature and rainfall showed statistically significant association with HFMD incidence at time lag of 1–2 weeks. Every 1°C increases in maximum temperature above 32°C elevated the risk of HFMD incidence by 36% (95% CI = 1.341–1.389). Simultaneously, one mm increase of weekly cumulative rainfall below 75 mm increased the risk of HFMD by 0.3% (CI = 1.002–1.003). While above 75 mm the effect was opposite and each mm increases of rainfall decreased the incidence by 0.5% (CI = 0.995–0.996). We also found that a difference between minimum and maximum temperature greater than 7°C elevated the risk of HFMD by 41% (CI = 1.388–1.439). Conclusion Our findings suggest a strong association between HFMD and weather. However, the exact reason for the association is yet to be studied. Information on maximum temperature above 32°C and moderate rainfall precede HFMD incidence could help to control and curb the up-surging trend of HFMD.


PLOS Neglected Tropical Diseases | 2012

Forecast of dengue incidence using temperature and rainfall

Yien Ling Hii; Huaiping Zhu; Nawi Ng; Lee Ching Ng; Joacim Rocklöv

Introduction An accurate early warning system to predict impending epidemics enhances the effectiveness of preventive measures against dengue fever. The aim of this study was to develop and validate a forecasting model that could predict dengue cases and provide timely early warning in Singapore. Methodology and Principal Findings We developed a time series Poisson multivariate regression model using weekly mean temperature and cumulative rainfall over the period 2000–2010. Weather data were modeled using piecewise linear spline functions. We analyzed various lag times between dengue and weather variables to identify the optimal dengue forecasting period. Autoregression, seasonality and trend were considered in the model. We validated the model by forecasting dengue cases for week 1 of 2011 up to week 16 of 2012 using weather data alone. Model selection and validation were based on Akaikes Information Criterion, standardized Root Mean Square Error, and residuals diagnoses. A Receiver Operating Characteristics curve was used to analyze the sensitivity of the forecast of epidemics. The optimal period for dengue forecast was 16 weeks. Our model forecasted correctly with errors of 0.3 and 0.32 of the standard deviation of reported cases during the model training and validation periods, respectively. It was sensitive enough to distinguish between outbreak and non-outbreak to a 96% (CI = 93–98%) in 2004–2010 and 98% (CI = 95%–100%) in 2011. The model predicted the outbreak in 2011 accurately with less than 3% possibility of false alarm. Significance We have developed a weather-based dengue forecasting model that allows warning 16 weeks in advance of dengue epidemics with high sensitivity and specificity. We demonstrate that models using temperature and rainfall could be simple, precise, and low cost tools for dengue forecasting which could be used to enhance decision making on the timing, scale of vector control operations, and utilization of limited resources.


Global Health Action | 2009

Climate variability and increase in intensity and magnitude of dengue incidence in Singapore

Yien Ling Hii; Joacim Rocklöv; Nawi Ng; Choon Siang Tang; Fung Yin Pang; Rainer Sauerborn

Introduction: Dengue is currently a major public health burden in Asia Pacific Region. This study aims to establish an association between dengue incidence, mean temperature and precipitation, and further discuss how weather predictors influence the increase in intensity and magnitude of dengue in Singapore during the period 2000–2007. Materials and methods: Weekly dengue incidence data, daily mean temperature and precipitation, and the midyear population data in Singapore during 2000–2007 were retrieved and analyzed. We employed a time series Poisson regression model including time factors such as time trends, lagged terms of weather predictors, considered autocorrelation, and accounted for changes in population size by offsetting. Results: The weekly mean temperature and cumulative precipitation were statistically significant related to the increases of dengue incidence in Singapore. Our findings showed that dengue incidence increased linearly at time lag of 5–16 and 5–20 weeks succeeding elevated temperature and precipitation, respectively. However, negative association occurred at lag week 17–20 with low weekly mean temperature as well as lag week 1–4 and 17–20 with low cumulative precipitation. Discussion: As Singapore experienced higher weekly mean temperature and cumulative precipitation in the years 2004–2007, our results signified hazardous impacts of climate factors on the increase in intensity and magnitude of dengue cases. The ongoing global climate change might potentially increase the burden of dengue fever infection in near future.


Global Health Action | 2012

DengueTools: innovative tools and strategies for the surveillance and control of dengue

Annelies Wilder-Smith; Karl Erik Renhorn; Hasitha Tissera; Sazaly Abu Bakar; Luke Alphey; Pattamaporn Kittayapong; Steve W. Lindsay; James G. Logan; Christoph Hatz; Paul Reiter; Joacim Rocklöv; Peter Byass; Valérie R Louis; Yesim Tozan; Eduardo Massad; Antonio Tenorio; Christophe Lagneau; Grégory L'Ambert; David Brooks; Johannah Wegerdt; Duane J. Gubler

Dengue fever is a mosquito-borne viral disease estimated to cause about 230 million infections worldwide every year, of which 25,000 are fatal. Global incidence has risen rapidly in recent decades with some 3.6 billion people, over half of the worlds population, now at risk, mainly in urban centres of the tropics and subtropics. Demographic and societal changes, in particular urbanization, globalization, and increased international travel, are major contributors to the rise in incidence and geographic expansion of dengue infections. Major research gaps continue to hamper the control of dengue. The European Commission launched a call under the 7th Framework Programme with the title of ‘Comprehensive control of Dengue fever under changing climatic conditions’. Fourteen partners from several countries in Europe, Asia, and South America formed a consortium named ‘DengueTools’ to respond to the call to achieve better diagnosis, surveillance, prevention, and predictive models and improve our understanding of the spread of dengue to previously uninfected regions (including Europe) in the context of globalization and climate change. The consortium comprises 12 work packages to address a set of research questions in three areas: Research area 1 Develop a comprehensive early warning and surveillance system that has predictive capability for epidemic dengue and benefits from novel tools for laboratory diagnosis and vector monitoring. Research area 2 Develop novel strategies to prevent dengue in children. Research area 3 Understand and predict the risk of global spread of dengue, in particular the risk of introduction and establishment in Europe, within the context of parameters of vectorial capacity, global mobility, and climate change. In this paper, we report on the rationale and specific study objectives of ‘DengueTools’. DengueTools is funded under the Health theme of the Seventh Framework Programme of the European Community, Grant Agreement Number: 282589 Dengue Tools.


Occupational and Environmental Medicine | 2011

Mortality related to temperature and persistent extreme temperatures: a study of cause-specific and age-stratified mortality

Joacim Rocklöv; Kristie L. Ebi; Bertil Forsberg

Objectives High and low ambient temperatures are associated with large numbers of deaths annually. Many studies show higher mortalities during heatwaves. However, such effects are rarely explicitly incorporated in models of temperature and mortality, although dehydration followed by cardiovascular stress is more likely to occur. The authors aim to establish time-series models in which the effects of persistent extreme temperature and temperature in general can be disentangled. Methods The authors established time-series Poisson regression models based on cause-specific mortality and age-stratified mortality in Stockholm County (Sweden), 1990–2002, adjusting for time trends and potential confounders, and studied the effects of temperature and persistence of extreme temperature. Results Persistent extremely high temperature was associated with additional deaths, and the risk of death increased significantly per day of extended heat exposure. Extreme exposure to heat was associated with higher death rates in adults and for cardiovascular causes of death, compared with a rise in temperature. Warmer temperatures increase daily mortality from natural causes, while decreasing colder temperatures increase the risk of cardiovascular deaths. Furthermore, the impact of warm and cold temperatures decreases within the season, while the impact of persistent extremely high temperatures remains similar throughout the summer. Conclusions The authors found the mortality impact of persistence of extreme high temperatures to increase proportionally to the length of the heat episode in addition to the effects of temperature based on the temperature–mortality relationship. Thus, the additional effect of persistent extreme heat was found to be important to incorporate for models of mortality related to ambient temperatures to avoid negatively biased attributed risks, especially for cardiovascular mortality. Moreover, the effects associated with non-extreme temperatures may decline as the pool of fragile individuals shrink as well as due to acclimatisation/adaptation. However, a similar decline was not observed for the effects associated with extreme heat episodes.

Collaboration


Dive into the Joacim Rocklöv's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annelies Wilder-Smith

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Kristie L. Ebi

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maquins Sewe

Kenya Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eduardo Massad

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge