Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joakim S. Dahlin is active.

Publication


Featured researches published by Joakim S. Dahlin.


Molecular Immunology | 2015

Mast cell progenitors : Origin, development and migration to tissues

Joakim S. Dahlin; Jenny Hallgren

Mast cells in tissues are developed from mast cell progenitors emerging from the bone marrow in a process highly regulated by transcription factors. Through the advancement of the multicolor flow cytometry technique, the mast cell progenitor population in the mouse has been characterized in terms of surface markers. However, only cell populations with enriched mast cell capability have been described in human. In naïve mice, the peripheral tissues have a constitutive pool of mast cell progenitors. Upon infections in the gut and in allergic inflammation in the lung, the local mast cell progenitor numbers increase tremendously. This review focuses on the origin and development of mast cell progenitors. Furthermore, the evidences for cells and molecules that govern the migration of these cells in mice in vivo are described.


PLOS ONE | 2011

IgE-mediated enhancement of CD4+ T cell responses in mice requires antigen presentation by CD11c+ cells and not by B cells.

Frida Henningsson; Zhoujie Ding; Joakim S. Dahlin; Marius Linkevicius; Fredrik Carlsson; Kjell-Olov Grönvik; Jenny Hallgren; Birgitta Heyman

IgE antibodies, administered to mice together with their specific antigen, enhance antibody and CD4+ T cell responses to this antigen. The effect is dependent on the low affinity receptor for IgE, CD23, and the receptor must be expressed on B cells. In vitro, IgE-antigen complexes are endocytosed via CD23 on B cells, which subsequently present the antigen to CD4+ T cells. This mechanism has been suggested to explain also IgE-mediated enhancement of immune responses in vivo. We recently found that CD23+ B cells capture IgE-antigen complexes in peripheral blood and rapidly transport them to B cell follicles in the spleen. This provides an alternative explanation for the requirement for CD23+ B cells. The aim of the present study was to determine whether B-cell mediated antigen presentation of IgE-antigen complexes explains the enhancing effect of IgE on immune responses in vivo. The ability of spleen cells, taken from mice 1–4 h after immunization with IgE-antigen, to present antigen to specific CD4+ T cells was analyzed. Antigen presentation was intact when spleens were depleted of CD19+ cells (i.e., primarily B cells) but was severely impaired after depletion of CD11c+ cells (i.e., primarily dendritic cells). In agreement with this, the ability of IgE to enhance proliferation of CD4+ T cells was abolished in CD11c-DTR mice conditionally depleted of CD11c+ cells. Finally, the lack of IgE-mediated enhancemen of CD4+ T cell responses in CD23-/- mice could be rescued by transfer of MHC-II-compatible as well as by MHC-II-incompatible CD23+ B cells. These findings argue against the idea that IgE-mediated enhancement of specific CD4+ T cell responses in vivo is caused by increased antigen presentation by B cells. A model where CD23+ B cells act as antigen transporting cells, delivering antigen to CD11c+ cells for presentation to T cells is consistent with available experimental data.


Blood | 2016

Lin- CD34hi CD117int/hi FcεRI+ cells in human blood constitute a rare population of mast cell progenitors.

Joakim S. Dahlin; Andrei Malinovschi; Helena Öhrvik; Martin Sandelin; Christer Janson; Kjell Alving; Jenny Hallgren

Mast cells are rare tissue-resident immune cells that are involved in allergic reactions, and their numbers are increased in the lungs of asthmatics. Murine lung mast cells arise from committed bone marrow-derived progenitors that enter the blood circulation, migrate through the pulmonary endothelium, and mature in the tissue. In humans, mast cells can be cultured from multipotent CD34(+) progenitor cells. However, a population of distinct precursor cells that give rise to mast cells has remained undiscovered. To our knowledge, this is the first report of human lineage-negative (Lin(-)) CD34(hi) CD117(int/hi) FcεRI(+) progenitor cells, which represented only 0.0053% of the isolated blood cells in healthy individuals. These cells expressed integrin β7 and developed a mast cell-like phenotype, although with a slow cell division capacity in vitro. Isolated Lin(-) CD34(hi) CD117(int/hi) FcεRI(+) blood cells had an immature mast cell-like appearance and expressed high levels of many mast cell-related genes as compared with human blood basophils in whole-transcriptome microarray analyses. Furthermore, serglycin, tryptase, and carboxypeptidase A messenger RNA transcripts were detected by quantitative reverse transcription-polymerase chain reaction. Altogether, we propose that the Lin(-) CD34(hi) CD117(int/hi) FcεRI(+) blood cells are closely related to human tissue mast cells and likely constitute an immediate precursor population, which can give rise to predominantly mast cells. Furthermore, asthmatics with reduced lung function had a higher frequency of Lin(-) CD34(hi) CD117(int/hi) FcεRI(+) blood mast cell progenitors than asthmatics with normal lung function.


Allergy | 2013

Committed mast cell progenitors in mouse blood differ in maturity between Th1 and Th2 strains

Joakim S. Dahlin; Birgitta Heyman; Jenny Hallgren

Mast cell progenitors (MCp) leave the bone marrow and migrate to peripheral tissues where they mature. Although the existence of committed MCp in adult mouse and human blood has been postulated, they have never been found. We have isolated a rare population of cells in adult mouse blood, committed to the mast cell lineage. These were identified as lineage− c‐kithi ST2+ integrin β7hi CD16/32hi cells. Moreover, a major difference in maturity of these cells based on FcεRI expression was observed between the Th2‐prone BALB/c strain and the Th1‐prone C57BL/6 strain (66% vs 25% FcεRI+, respectively). Therefore, the choice of mouse strain is critical when studying disease models such as experimental asthma where mast cells and their progenitors are involved.


Journal of Immunology | 2012

CD11c + Cells Are Required for Antigen-Induced Increase of Mast Cells in the Lung

Joakim S. Dahlin; Ricardo Feinstein; Yue Cui; Birgitta Heyman; Jenny Hallgren

Patients with allergic asthma have more lung mast cells, which likely worsens the symptoms. In experimental asthma, CD11c+ cells have to be present during the challenge phase for several features of allergic inflammation to occur. Whether CD11c+ cells play a role for Ag-induced increases of lung mast cells is unknown. In this study, we used diphtheria toxin treatment of sensitized CD11c-diphtheria toxin receptor transgenic mice to deplete CD11c+ cells. We demonstrate that recruitment of mast cell progenitors to the lung is substantially reduced when CD11c+ cells are depleted during the challenge phase. This correlated with an impaired induction of endothelial VCAM-1 and led to a significantly reduced number of mature mast cells 1 wk after challenge. Collectively, these data suggest that Ag challenge stimulates CD11c+ cells to produce cytokines and/or chemokines required for VCAM-1 upregulation on the lung endothelium, which in turn is crucial for the Ag-induced mast cell progenitor recruitment and the increase in mast cell numbers.


PLOS ONE | 2011

IgE Immune Complexes Stimulate an Increase in Lung Mast Cell Progenitors in a Mouse Model of Allergic Airway Inflammation

Joakim S. Dahlin; Martin A. Ivarsson; Birgitta Heyman; Jenny Hallgren

Mast cell numbers and allergen specific IgE are increased in the lungs of patients with allergic asthma and this can be reproduced in mouse models. The increased number of mast cells is likely due to recruitment of mast cell progenitors that mature in situ. We hypothesized that formation of IgE immune complexes in the lungs of sensitized mice increase the migration of mast cell progenitors to this organ. To study this, a model of allergic airway inflammation where mice were immunized with ovalbumin (OVA) in alum twice followed by three daily intranasal challenges of either OVA coupled to trinitrophenyl (TNP) alone or as immune complexes with IgE-anti-TNP, was used. Mast cell progenitors were quantified by a limiting dilution assay. IgE immune complex challenge of sensitized mice elicited three times more mast cell progenitors per lung than challenge with the same dose of antigen alone. This dose of antigen challenge alone did not increase the levels of mast cell progenitors compared to unchallenged mice. IgE immune complex challenge of sensitized mice also enhanced the frequency of mast cell progenitors per 106 mononuclear cells by 2.1-fold. The enhancement of lung mast cell progenitors by IgE immune complex challenge was lost in FcRγ deficient mice but not in CD23 deficient mice. Our data show that IgE immune complex challenge enhances the number of mast cell progenitors in the lung through activation of an Fc receptor associated with the FcRγ chain. This most likely takes place via activation of FcεRI, although activation via FcγRIV or a combination of the two receptors cannot be excluded. IgE immune complex-mediated enhancement of lung MCp numbers is a new reason to target IgE in therapies against allergic asthma.


Stem Cells and Development | 2015

Distinguishing Mast Cell Progenitors from Mature Mast Cells in Mice

Joakim S. Dahlin; Zhoujie Ding; Jenny Hallgren

Mast cells originate from the bone marrow and develop into c-kit+ FcɛRI+ cells. Both mast cell progenitors (MCp) and mature mast cells express these cell surface markers, and ways validated to distinguish between the two maturation forms with flow cytometry have been lacking. Here, we show that primary peritoneal MCp from naïve mice expressed high levels of integrin β7 and had a low side scatter (SSC) light profile; whereas mature mast cells expressed lower levels of integrin β7 and had a high SSC light profile. The maturation statuses of the cells were confirmed using three main strategies: (1) MCp, but not mature mast cells, were shown to be depleted by sublethal whole-body γ-irradiation. (2) The MCp were small and immature in terms of granule formation, whereas the mature mast cells were larger and had fully developed metachromatic granules. (3) The MCp had fewer transcripts of mast cell-specific proteases and the enzyme responsible for sulfation of heparin than mature mast cells. Moreover, isolated peritoneal MCp gave rise to mast cells when cultured in vitro. To summarize, we have defined MCp and mature mast cells in naïve mice by flow cytometry. Using this strategy, mast cell maturation can be studied in vivo.


Journal of Immunology | 2014

Mouse Mast Cell Protease-6 and MHC Are Involved in the Development of Experimental Asthma

Yue Cui; Joakim S. Dahlin; Ricardo Feinstein; Lora G. Bankova; Wei Xing; Kichul Shin; Michael F. Gurish; Jenny Hallgren

Allergic asthma is a complex disease with a strong genetic component where mast cells play a major role by the release of proinflammatory mediators. In the mouse, mast cell protease-6 (mMCP-6) closely resembles the human version of mast cell tryptase, β-tryptase. The gene that encodes mMCP-6, Tpsb2, resides close by the H-2 complex (MHC gene) on chromosome 17. Thus, when the original mMCP-6 knockout mice were backcrossed to the BALB/c strain, these mice were carrying the 129/Sv haplotype of MHC (mMCP-6−/−/H-2bc). Further backcrossing yielded mMCP-6−/− mice with the BALB/c MHC locus. BALB/c mice were compared with mMCP-6−/− and mMCP-6−/−/H-2bc mice in a mouse model of experimental asthma. Although OVA-sensitized and challenged wild type mice displayed a striking airway hyperresponsiveness (AHR), mMCP-6−/− mice had less AHR that was comparable with that of mMCP-6−/−/H-2bc mice, suggesting that mMCP-6 is required for a full-blown AHR. The mMCP-6−/−/H-2bc mice had strikingly reduced lung inflammation, IgE responses, and Th2 cell responses upon sensitization and challenge, whereas the mMCP-6−/− mice responded similarly to the wild type mice but with a minor decrease in bronchoalveolar lavage eosinophils. These findings suggest that inflammatory Th2 responses are highly dependent on the MHC-haplotype and that they can develop essentially independently of mMCP-6, whereas mMCP-6 plays a key role in the development of AHR.


Frontiers in Immunology | 2017

Influenza Infection in Mice Induces Accumulation of Lung Mast Cells through the Recruitment and Maturation of Mast Cell Progenitors

Behdad Zarnegar; Erika Mendez-Enriquez; Annika Westin; Cecilia Söderberg; Joakim S. Dahlin; Kjell-Olov Grönvik; Jenny Hallgren

Mast cells (MCs) are powerful immune cells that mature in the peripheral tissues from bone marrow (BM)-derived mast cell progenitors (MCp). Accumulation of MCs in lung compartments where they are normally absent is thought to enhance symptoms in asthma. The enrichment of lung MCs is also observed in mice subjected to models of allergic airway inflammation. However, whether other types of lung inflammation trigger increased number of MCp, which give rise to MCs, is unknown. Here, mouse-adapted H1N1 influenza A was used as a model of respiratory virus infection. Intranasal administration of the virus induced expression of VCAM-1 on the lung vascular endothelium and an extensive increase in integrin β7hi lung MCp. Experiments were performed to distinguish whether the influenza-induced increase in the number of lung MCp was triggered mainly by recruitment or in situ cell proliferation. A similar proportion of lung MCp from influenza-infected and PBS control mice were found to be in a proliferative state. Furthermore, BM chimeric mice were used in which the possibility of influenza-induced in situ cell proliferation of host MCp was prevented. Influenza infection in the chimeric mice induced a similar number of lung MCp as in normal mice. These experiments demonstrated that recruitment of MCp to the lung is the major mechanism behind the influenza-induced increase in lung MCp. Fifteen days post-infection, the influenza infection had elicited an immature MC population expressing intermediate levels of integrin β7, which was absent in controls. At the same time point, an increased number of toluidine blue+ MCs was detected in the upper central airways. When the inflammation was resolved, the MCs that accumulated in the lung upon influenza infection were gradually lost. In summary, our study reveals that influenza infection induces a transient accumulation of lung MCs through the recruitment and maturation of MCp. We speculate that temporary augmented numbers of lung MCs are a cause behind virus-induced exacerbations of MC-related lung diseases such as asthma.


Scientific Reports | 2016

IgE-mediated enhancement of CD4(+) T cell responses requires antigen presentation by CD8α(-) conventional dendritic cells.

Zhoujie Ding; Joakim S. Dahlin; Hui Xu; Birgitta Heyman

IgE, forming an immune complex with small proteins, can enhance the specific antibody and CD4+ T cell responses in vivo. The effects require the presence of CD23 (Fcε-receptor II)+ B cells, which capture IgE-complexed antigens (Ag) in the circulation and transport them to splenic B cell follicles. In addition, also CD11c+ cells, which do not express CD23, are required for IgE-mediated enhancement of T cell responses. This suggests that some type of dendritic cell obtains IgE-Ag complexes from B cells and presents antigenic peptides to T cells. To elucidate the nature of this dendritic cell, mice were immunized with ovalbumin (OVA)-specific IgE and OVA, and different populations of CD11c+ cells, obtained from the spleens four hours after immunization, were tested for their ability to present OVA. CD8α− conventional dendritic cells (cDCs) were much more efficient in inducing specific CD4+ T cell proliferation ex vivo than were CD8α+ cDCs or plasmacytoid dendritic cells. Thus, IgE-Ag complexes administered intravenously are rapidly transported to the spleen by recirculating B cells where they are delivered to CD8α− cDCs which induce proliferation of CD4+ T cells.

Collaboration


Dive into the Joakim S. Dahlin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ricardo Feinstein

National Veterinary Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge