Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joan M. Bienvenue is active.

Publication


Featured researches published by Joan M. Bienvenue.


Proceedings of the National Academy of Sciences of the United States of America | 2006

A fully integrated microfluidic genetic analysis system with sample-in–answer-out capability

Christopher J. Easley; James M. Karlinsey; Joan M. Bienvenue; Lindsay A. Legendre; Michael G. Roper; Sanford H. Feldman; Molly A. Hughes; Erik L. Hewlett; Tod J. Merkel; Jerome P. Ferrance; James P. Landers

We describe a microfluidic genetic analysis system that represents a previously undescribed integrated microfluidic device capable of accepting whole blood as a crude biological sample with the endpoint generation of a genetic profile. Upon loading the sample, the glass microfluidic genetic analysis system device carries out on-chip DNA purification and PCR-based amplification, followed by separation and detection in a manner that allows for microliter samples to be screened for infectious pathogens with sample-in–answer-out results in <30 min. A single syringe pump delivers sample/reagents to the chip for nucleic acid purification from a biological sample. Elastomeric membrane valving isolates each distinct functional region of the device and, together with resistive flow, directs purified DNA and PCR reagents from the extraction domain into a 550-nl chamber for rapid target sequence PCR amplification. Repeated pressure-based injections of nanoliter aliquots of amplicon (along with the DNA sizing standard) allow electrophoretic separation and detection to provide DNA fragment size information. The presence of Bacillus anthracis (anthrax) in 750 nl of whole blood from living asymptomatic infected mice and of Bordetella pertussis in 1 μl of nasal aspirate from a patient suspected of having whooping cough are confirmed by the resultant genetic profile.


Analytical Chemistry | 2008

Purification of Nucleic Acids in Microfluidic Devices

Jian Wen; Lindsay A. Legendre; Joan M. Bienvenue; James P. Landers

The functionality of micropillars, microposts, silica beads, silica particles, sol−gels, and porous monoliths provides a framework for sample preparation and analysis for an integrated microfluidic system.


Forensic Science International-genetics | 2010

An integrated microfluidic device for DNA purification and PCR amplification of STR fragments

Joan M. Bienvenue; Lindsay A. Legendre; Jerome P. Ferrance; James P. Landers

This work presents the integration of DNA extraction from complex samples and PCR amplification of STR fragments in a valveless, glass microdevice, using commercially available kits and instrumentation. DNA extraction was performed using a microchannel packed with a silica solid phase and a standard syringe pump as a single pressure source driving the extraction process, followed by integrated, online microchip amplification of STR fragments in a total volume of 1.2 microL. Reported characteristics important to this work include the capacity of the device for purification of DNA from a complex biological sample (whole blood) and the timing of DNA elution from the silica solid phase for successful downstream PCR amplification by placement the microdevice into a conventional thermocycler. Potential application of this microdevice to forensic genetic analysis was demonstrated through the preliminary extraction of DNA from semen, followed by an integrated, multiplexed, on-chip amplification that yielded detectable STR amplicons. By utilizing conventional laboratory equipment, the device presented exploits the benefits of microfluidic systems without complex control systems.


Analytical Chemistry | 2008

Microchip-based solid-phase purification of RNA from biological samples.

Kristin A. Hagan; Joan M. Bienvenue; Christopher A. Moskaluk; James P. Landers

Having previously detailed a method for chip-based extraction of DNA (Anal. Chem. 2003, 75, 1880-1886.), we describe here a microchip-based solid-phase extraction method for purification of RNA from biological samples is demonstrated. The method involves the use of silica beads as a solid phase, and the capacity of the device containing silica beads for RNA, RNA in the presence of protein, and DNA was determined. The capacity of the device for RNA binding in the presence of protein is 360 ng, which demonstrates sufficient capacity of the device for complete genetic analysis. An extraction of RNA can be performed on the device in as few as approximately 9 min (analytical time), a time comparable to that of a commercial extraction method, but with less reagent consumption. The microchip-based extraction is also performed in a closed system, unlike the commercial extraction method, which provides the advantage of decreased opportunity for the introduction of RNases and contaminants--essential for the sensitive RNA-based analyses presented in this work. RNA purified using the device was shown to be amplifiable using reverse transcription PCR (RT-PCR), allowing for translation of the method to the purification and subsequent amplification of biological samples. RNA was purified using the microchip-based method from neat semen, a mock semen stain, and cultured cells from a common pediatric cancer, alveolar rhabdomyosarcoma.


Analytical Chemistry | 2014

DNA analysis using an integrated microchip for multiplex PCR amplification and electrophoresis for reference samples.

Delphine Le Roux; Brian E. Root; Carmen R. Reedy; Jeffrey A. Hickey; Orion Scott; Joan M. Bienvenue; James P. Landers; Luc Chassagne

A system that automatically performs the PCR amplification and microchip electrophoretic (ME) separation for rapid forensic short tandem repeat (STR) forensic profiling in a single disposable plastic chip is demonstrated. The microchip subassays were optimized to deliver results comparable to conventional benchtop methods. The microchip process was accomplished in sub-90 min compared with >2.5 h for the conventional approach. An infrared laser with a noncontact temperature sensing system was optimized for a 45 min PCR compared with the conventional 90 min amplification time. The separation conditions were optimized using LPA-co-dihexylacrylamide block copolymers specifically designed for microchip separations to achieve accurate DNA size calling in an effective length of 7 cm in a plastic microchip. This effective separation length is less than half of other reports for integrated STR analysis and allows a compact, inexpensive microchip design. This separation quality was maintained when integrated with microchip PCR. Thirty samples were analyzed conventionally and then compared with data generated by the microfluidic chip system. The microfluidic system allele calling was 100% concordant with the conventional process. This study also investigated allelic ladder consistency over time. The PCR-ME genetic profiles were analyzed using binning palettes generated from two sets of allelic ladders run three and six months apart. Using these binning palettes, no allele calling errors were detected in the 30 samples demonstrating that a microfluidic platform can be highly consistent over long periods of time.


Analyst | 2011

A valveless microfluidic device for integrated solid phase extraction and polymerase chain reaction for short tandem repeat (STR) analysis

Kristin A. Hagan; Carmen R. Reedy; Joan M. Bienvenue; Alison H. Dewald; James P. Landers

A valveless microdevice has been developed for the integration of solid phase extraction (SPE) and polymerase chain reaction (PCR) on a single chip for the short tandem repeat (STR) analysis of DNA from a biological sample. The device consists of two domains--a SPE domain filled with silica beads as a solid phase and a PCR domain with an ~500 nL reaction chamber. DNA from buccal swabs was purified and amplified using the integrated device and a full STR profile (16 loci) resulted. The 16 loci Identifiler® multiplex amplification was performed using a non-contact infrared (IR)-mediated PCR system built in-house, after syringe-driven SPE, providing an ~80-fold and 2.2-fold reduction in sample and reagent volumes consumed, respectively, as well as an ~5-fold reduction in the overall analysis time in comparison to conventional analysis. Results indicate that the SPE-PCR system can be used for many applications requiring genetic analysis, and the future addition of microchip electrophoresis (ME) to the system would allow for the complete processing of biological samples for forensic STR analysis on a single microdevice.


Forensic Science International-genetics | 2010

Volume reduction solid phase extraction of DNA from dilute, large-volume biological samples

Carmen R. Reedy; Joan M. Bienvenue; Lisa Coletta; Briony C. Strachan; Naila Bhatri; Susan A. Greenspoon; James P. Landers

Microdevices are often designed to process sample volumes on the order of tens of microliters and cannot typically accommodate larger volume samples without adversely affecting efficiency and greatly increasing analysis time. However, dilute, large-volume biological samples are frequently encountered, especially in forensic or clinical laboratories. A microdevice, capable of efficiently processing 0.5-1 mL samples has been developed for solid phase extraction (SPE) of DNA. SPE was carried out on a microdevice utilizing magnetic silica particles and an optimized volumetric flow rate and elution buffer, resulting in a 50-fold decrease in volume and a 15-fold increase in DNA concentration. Device characterization studies showed DNA extraction efficiencies comparable with previously reported silica-based purification methods, with robust performance demonstrated by the successful amplification of a fragment from the gelsolin gene extracted from dilute whole blood. In addition, the microchip-based method for SPE of large volume, dilute samples was also used to demonstrate the first successful on-chip purification of mitochondrial DNA (mtDNA) from both dilute whole blood and a degraded blood stain.


Journal of Laboratory Automation | 2008

Toward a Simplified Microfluidic Device for Ultra-fast Genetic Analysis with Sample-In/Answer-Out Capability: Application to T-Cell Lymphoma Diagnosis

Lindsay A. Legendre; Carleen J. Morris; Joan M. Bienvenue; Annelise Barron; Rebecca McClure; James P. Landers

If microfluidic devices capable of rapid genetic analysis are to affect clinical diagnostics, they ultimately must be capable of carrying out more than ultra-rapid electrophoretic separations. The last half decade has seen a groundswell of activity in defining miniaturized DNA sample preparation methodologies that can be integrated with chip-based electrophoretic separations. Successfull integration of PCR-based DNA amplification and solid-phase DNA sets the stage for integrated microminiaturized analytical systems with sample in-answer out capabilities. Here we provide a brief review of the state of the art on the microfluidic integration of sample preparation processes with discussion of several systems with highly integrated capabilities, including one capable of detection of infectious agents present in complex biofluids in less than 30 min. This overview is used as a launch point to discuss the design and functionality of similar devices capable of accepting a whole blood or fine-needle aspirate sample, purifying the DNA, amplifying target sequences of the T-cell receptor-γ gene, and eletrophoretically resolving the products for detection of a signature consistent with monoclonality. We describe the details of the early experimental success in defining the individual chip-based processes required for an integrated T-cell lymphoma chip, with a vision to a device that provide sample in-answer out capabilities for diagnosing certain blood cancers in roughly 1 h.


Analytica Chimica Acta | 2011

A modular microfluidic system for deoxyribonucleic acid identification by short tandem repeat analysis

Carmen R. Reedy; Kristin A. Hagan; Daniel J. Marchiarullo; Alison H. Dewald; Annalise Barron; Joan M. Bienvenue; James P. Landers

Microfluidic technology has been utilized in the development of a modular system for DNA identification through STR (short tandem repeat) analysis, reducing the total analysis time from the ∼6 h required with conventional approaches to less than 3h. Results demonstrate the utilization of microfluidic devices for the purification, amplification, separation and detection of 9 loci associated with a commercially-available miniSTR amplification kit commonly used in the forensic community. First, DNA from buccal swabs purified in a microdevice was proven amplifiable for the 9 miniSTR loci via infrared (IR)-mediated PCR (polymerase chain reaction) on a microdevice. Microchip electrophoresis (ME) was then demonstrated as an effective method for the separation and detection of the chip-purified and chip-amplified DNA with results equivalent to those obtained using conventional separation methods on an ABI 310 Genetic Analyzer. The 3-chip system presented here demonstrates development of a modular, microfluidic system for STR analysis, allowing for user-discretion as to how to proceed after each process during the analysis of forensic casework samples.


Journal of Forensic Sciences | 2005

Evaluation of Sieving Polymers for Fast, Reproducible Electrophoretic Analysis of Short Tandem Repeats (STR) in Capillaries

Joan M. Bienvenue; Kate L. Wilson; James P. Landers; Jerome P. Ferrance

Efficient capillary electrophoretic STR analysis requires rapid, reproducible and robust separation of DNA fragments with reasonable capillary longevity--this is currently accomplished using proprietary commercial polymeric sieving matrices specifically developed for this separation. These matrices, while effective, are costly and do not provide adequate resolution of STR DNA fragments in capillaries with shorter effective separation lengths, increasing the time required to accomplish the separation and minimizing the potential extrapolation to other miniaturized platforms. As the forensic community looks toward next generation microchip technology as a means of processing casework more rapidly, new sieving polymers need to be evaluated for utilization in this platform. The research presented here describes the assessment of commercially-available polymeric sieving matrices for STR analysis, with consideration given to feasibility of incorporation into a microdevice. Polymer composition, molecular weight, and concentration were evaluated, along with an assessment of the effects of buffer composition, separation temperature, and capillary length. These variables were evaluated individually or collectively on the ability to resolve STR DNA fragments and the reproducibility of the separations and the results compared to a proprietary commercial product. A 600,000 Da MW poly(ethylene oxide) (PEO) solution at a 3% (w/v) concentration was determined to be the most suitable matrix for these separations. This polymer, in coated capillaries, provided highly robust and reproducible separations, with near baseline resolution of fragments having single base differences. Reductions in the temperature of the separation, from 60 degrees C to 40 degrees C, and the urea concentration of the buffer, from 7 M to 3.5 M, provided increased longevity of the PEO polymer for repeated separations. Comparison of this polymer with currently specified commercial products used for STR analysis showed that the optimized PEO matrix provided superior separations under all conditions tested. In addition, PEO could be utilized in shorter capillary systems, with a concurrent decrease in analysis time, highlighting its potential for use in shortened capillary or microdevice systems.

Collaboration


Dive into the Joan M. Bienvenue's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Orion Scott

University of Virginia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge