Joan Mecsas
Tufts University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joan Mecsas.
The EMBO Journal | 1995
P. E. Rouviere; A De Las Peñas; Joan Mecsas; Chi Zen Lu; K. E. Rudd; Carol A. Gross
In Escherichia coli, the heat shock response is under the control of two alternative sigma factors: sigma 32 and sigma E. The sigma 32‐regulated response is well understood, whereas little is known about that of sigma E, except that it responds to extracytoplasmic immature outer membrane proteins. To further understand this response, we located the rpoE gene at 55.5′ and analyzed the role of sigma E. sigma E is required at high temperature, and controls the transcription of at least 10 genes. Some of these might contribute to the integrity of the cell since delta rpoE cells are more sensitive to SDS plus EDTA and crystal violet. sigma E controls its own transcription from a sigma E‐dependent promoter, indicating that rpoE transcription plays a role in the regulation of E sigma E activity. Indeed, under steady‐state conditions, the transcription from this promoter mirrors the levels of E sigma E activity in the cell. However, it is unlikely that the rapid increase in E sigma E activity following induction can be accounted for solely by increased transcription of rpoE. Based upon homology arguments, we suggest that a gene encoding a negative regulator of sigma E activity is located immediately downstream of rpoE and may function as the target of the E sigma E inducing signal.
PLOS Pathogens | 2007
Sarah Jane White; Ari Rosenbach; Paul Lephart; Diem Nguyen; Alana Benjamin; Saul Tzipori; Malcolm Whiteway; Joan Mecsas; Carol A. Kumamoto
Interactions between colonizing commensal microorganisms and their hosts play important roles in health and disease. The opportunistic fungal pathogen Candida albicans is a common component of human intestinal flora. To gain insight into C. albicans colonization, genes expressed by fungi grown within a host were studied. The EFH1 gene, encoding a putative transcription factor, was highly expressed during growth of C. albicans in the intestinal tract. Counterintuitively, an efh1 null mutant exhibited increased colonization of the murine intestinal tract, a model of commensal colonization, whereas an EFH1 overexpressing strain exhibited reduced colonization of the intestinal tract and of the oral cavity of athymic mice, the latter situation modeling human mucosal candidiasis. When inoculated into the bloodstream of mice, both efh1 null and EFH1 overexpressing strains caused lethal infections. In contrast, other mutants are attenuated in virulence following intravenous inoculation but exhibited normal levels of intestinal colonization. Finally, although expression of several genes is dependent on transcription factor Efg1p during laboratory growth, Efg1p-independent expression of these genes was observed during growth within the murine intestinal tract. These results show that expression of EFH1 regulated the level of colonizing fungi, favoring commensalism as opposed to candidiasis. Also, different genes are required in different host niches and the pathway(s) that regulates gene expression during host colonization can differ from well-characterized pathways used during laboratory growth.
Infection and Immunity | 2003
Lauren K. Logsdon; Joan Mecsas
ABSTRACT The gram-negative enteric pathogen Yersinia pseudotuberculosis employs a type III secretion system and effector Yop proteins that are required for virulence. Mutations in the type III secretion-translocation apparatus have been shown to cause defects in colonization of the murine cecum, suggesting roles for one or more effector Yops in the intestinal tract. To investigate this possibility, isogenic yop mutant strains were tested for their ability to colonize and persist in intestinal and associated lymph tissues of the mouse following orogastric inoculation. In single-strain infections, a yopHEMOJ mutant strain was unable to colonize, replicate, or persist in intestinal and lymph tissues. A yopH mutant strain specifically fails to colonize the mesenteric lymph nodes, but yopE and yopO mutant strains showed only minor defects in persistence in intestinal and lymph tissues. While no single Yop was found to be essential for colonization or persistence in intestinal tissues in single-strain infections, the absence of both YopH and YopE together almost eliminated colonization of all tissues, indicating either that these two Yops have some redundant functions or that Y. pseudotuberculosis employs multiple strategies for colonization. In competition infections with wild-type Y. pseudotuberculosis, the presence of wild-type bacteria severely hindered the ability of the yopH, yopE, and yopO mutants to persist in many tissues, suggesting that the wild-type bacteria either fills colonization niches or elicits host responses that the yop mutants are unable to withstand.
Infection and Immunity | 2001
Joan Mecsas; Inna Bilis; Stanley Falkow
ABSTRACT Yersinia pseudotuberculosis localizes to the distal ileum, cecum, and proximal colon of the gastrointestinal tract after oral infection. Using signature-tagged mutagenesis, we isolated 13Y. pseudotuberculosis mutants that failed to survive in the cecum of mice after orogastric inoculation. Twelve of these mutants were also attenuated for replication in the spleen after intraperitoneal infection, whereas one strain, mutated the gene encoding invasin, replicated as well as wild-type bacteria in the spleen. Several mutations were in operons encoding components of the type III secretion system, including components involved in translocating Yop proteins into host cells. This indicates that one or more Yops may be necessary for survival in the gastrointestinal tract. Three mutants were defective in O-antigen biosynthesis; these mutants were also unable to invade epithelial cells as efficiently as wild-typeY. pseudotuberculosis. Several other mutations were in genes that had not previously been associated with growth in a host, including cls, ksgA, and sufl. In addition, using Y. pseudotuberculosis strains marked with signature tags, we counted the number of different bacterial clones that were present in the cecum, mesenteric lymph nodes, and spleen 5 days postinfection. We find barriers in the host animal that limit the number of bacteria that succeed in reaching and/or replicating in the mesenteric lymph nodes and spleen after breaching the gut mucosa.
Journal of Experimental Medicine | 2006
Penelope Barnes; Molly A. Bergman; Joan Mecsas; Ralph R. Isberg
Dissemination of Yersinia pseudotuberculosis within mice after oral inoculation was analyzed. Y. pseudotuberculosis translocated to organs such as the liver and spleen shortly after oral inoculation, but was quickly cleared. In contrast, a second temporally distinct bacterial translocation event resulted in successful hepatosplenic replication of the bacteria. Replicating pools of bacteria could be established in these organs in mouse mutants that lacked Peyers patches. These animals frequently had sterile mesenteric lymph nodes, a finding consistent with translocation taking place independently of regional lymph node colonization. In further contradiction to accepted models for dissemination of enteropathogens, clonal analysis revealed that bacteria causing disease in the spleen and liver of C57BL/6J mice were derived from populations located outside the intestinal lymph nodes. Replication of bacteria in the intestine before translocation appeared critical for dissemination, as transient selective suppression by streptomycin of bacterial growth in the intestine delayed dissemination of Y. pseudotuberculosis. These results collectively indicate that hepatosplenic colonization appears intimately connected with the ability of Y. pseudotuberculosis to successfully establish replication in the intestinal lumen and does not result from ordered spread leading from the intestine to regional lymph nodes before dissemination.
Microbiology and Molecular Biology Reviews | 2016
Michelle K. Paczosa; Joan Mecsas
SUMMARY Klebsiella pneumoniae causes a wide range of infections, including pneumonias, urinary tract infections, bacteremias, and liver abscesses. Historically, K. pneumoniae has caused serious infection primarily in immunocompromised individuals, but the recent emergence and spread of hypervirulent strains have broadened the number of people susceptible to infections to include those who are healthy and immunosufficient. Furthermore, K. pneumoniae strains have become increasingly resistant to antibiotics, rendering infection by these strains very challenging to treat. The emergence of hypervirulent and antibiotic-resistant strains has driven a number of recent studies. Work has described the worldwide spread of one drug-resistant strain and a host defense axis, interleukin-17 (IL-17), that is important for controlling infection. Four factors, capsule, lipopolysaccharide, fimbriae, and siderophores, have been well studied and are important for virulence in at least one infection model. Several other factors have been less well characterized but are also important in at least one infection model. However, there is a significant amount of heterogeneity in K. pneumoniae strains, and not every factor plays the same critical role in all virulent Klebsiella strains. Recent studies have identified additional K. pneumoniae virulence factors and led to more insights about factors important for the growth of this pathogen at a variety of tissue sites. Many of these genes encode proteins that function in metabolism and the regulation of transcription. However, much work is left to be done in characterizing these newly discovered factors, understanding how infections differ between healthy and immunocompromised patients, and identifying attractive bacterial or host targets for treating these infections.
Microbiology spectrum | 2016
Erin R. Green; Joan Mecsas
Bacterial pathogens utilize a multitude of methods to invade mammalian hosts, damage tissue sites, and thwart the immune system from responding. One essential component of these strategies for many bacterial pathogens is the secretion of proteins across phospholipid membranes. Secreted proteins can play many roles in promoting bacterial virulence, from enhancing attachment to eukaryotic cells, to scavenging resources in an environmental niche, to directly intoxicating target cells and disrupting their functions. Many pathogens use dedicated protein secretion systems to secrete virulence factors from the cytosol of the bacteria into host cells or the host environment. In general, bacterial protein secretion apparatuses can be divided into classes, based on their structures, functions, and specificity. Some systems are conserved in all classes of bacteria and secrete a broad array of substrates, while others are only found in a small number of bacterial species and/or are specific to only one or a few proteins. In this chapter, we review the canonical features of several common bacterial protein secretion systems, as well as their roles in promoting the virulence of bacterial pathogens. Additionally, we address recent findings that indicate that the innate immune system of the host can detect and respond to the presence of protein secretion systems during mammalian infection.
Current Opinion in Microbiology | 2002
Joan Mecsas
From 2000-2001, over 10 studies have been completed, using signature-tagged mutagenesis, on a variety of bacterial pathogens. Investigators are examining the attenuated strains in additional in vivo, cell culture or in vitro assays to further characterize and catalog the mutants. Notable advances included screening of the attenuated mutants en masse in other assays, verification that mutant strains are defective for growth in specific host tissues, and identification of potential live-attenuated vaccine candidates. In addition, researchers are using signature-tagged strains to characterize the infection process, which is providing snapshots of bottlenecks and quantitative measurements of bacterial spread from tissue to tissue. This review focuses on themes emerging from signature-tagged mutagenesis studies completed on bacterial pathogens since mid-2000.
Nature | 2004
Joan Mecsas; Greg Franklin; William A. Kuziel; Robert R. Brubaker; Stanley Falkow; Donald E. Mosier
A recent and prevalent mutation in the chemokine receptor CCR5 in humans of northern European ancestry has been proposed to provide protection against bubonic plague. Here we infect both normal and CCR5-deficient mice with the bacterium Yersinia pestis, the cause of the plague epidemics that wiped out one-third of Europeans in the Middle Ages, and find no difference in either bacterial growth or survival time between the two groups. Unless the pathogenesis of Yersinia infection differs markedly between mice and humans, our results indicate that CCR5 deficiency in people is unlikely to protect against plague.
Molecular Microbiology | 1998
Joan Mecsas; Bärbel Raupach; Stanley Falkow
Yersinia virulence is dependent on the expression of plasmid‐encoded secreted proteins called Yops. After bacterial adherence to receptors on the mammalian cell membrane, several Yops are transported by a type III secretion pathway into the host cell cytoplasm. Two Yops, YopH and YopE, prevent macrophages from phagocytosing Yersinia by disrupting the host cell cytoskeleton and signal transduction pathways. In contrast to this active inhibition of phagocytosis by Yersinia, other pathogens such as Salmonella, Shigella, Listeria and Edwardsiella actively promote their entry into mammalian cells by binding to specific host surface receptors and exploiting existing cell cytoskeletal and signalling pathways. We have tested whether Yersinia Yops can prevent the uptake of these diverse invasive pathogens. We first infected epithelial cells with Yersinia to permit delivery of Yops and subsequently with an invasive pathogen. We then measured the level of bacterial invasion. Preinfection with Yersinia inhibited invasion of Edwardsiella, Shigella and Listeria, but not Salmonella. Furthermore, we found that either YopE or YopH prevented Listeria invasion, whereas only YopE prevented Edwardsiella and Shigella invasion. We correlated the inhibitory effect of the Yops with the inhibitory action of the cell‐signalling inhibitors Wortmannin, LY294002 and NDGA, and concluded that the four invasive pathogenic species enter epithelial cells using at least three distinct host cell pathways. We also speculate that YopE affects the rho pathway.