Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joan Papillon is active.

Publication


Featured researches published by Joan Papillon.


Journal of Biological Chemistry | 2002

Complement C5b-9 Membrane Attack Complex Increases Expression of Endoplasmic Reticulum Stress Proteins in Glomerular Epithelial Cells

Andrey V. Cybulsky; Tomoko Takano; Joan Papillon; Abdelkrim Khadir; Jianhong Liu; Hongwei Peng

In the passive Heymann nephritis (PHN) model of membranous nephropathy, complement C5b-9 induces glomerular epithelial cell (GEC) injury, proteinuria, and activation of cytosolic phospholipase A2 (cPLA2). This study addresses the role of endoplasmic reticulum (ER) stress proteins (bip, grp94) in GEC injury. GEC that overexpress cPLA2 (produced by transfection) and “neo” GEC (which expresses cPLA2at a lower level) were incubated with complement (40 min), and leakage of constitutively expressed bip and grp94 from ER into cytosol was measured to monitor ER injury. Greater leakage of bip and grp94 occurred in complement-treated GEC that overexpress cPLA2, as compared with neo, implying that cPLA2 activation perturbed ER membrane integrity. After chronic incubation (4–24 h), C5b-9 increased bip and grp94 mRNAs and proteins, and the increases were dependent on cPLA2. Expression of bip-antisense mRNA reduced stimulated bip protein expression and enhanced complement-dependent GEC injury. Glomerular bip and grp94 proteins were up-regulated in proteinuric rats with PHN, as compared with normal control. Pretreatment of rats with tunicamycin or adriamycin, which increase ER stress protein expression, reduced proteinuria in PHN. Thus, C5b-9 injures the ER and enhances ER stress protein expression, in part, via activation of cPLA2. ER stress protein induction is a novel mechanism of protection from complement attack.


Journal of Biological Chemistry | 2006

Induction of Apoptosis by the Ste20-like Kinase SLK, a Germinal Center Kinase That Activates Apoptosis Signal-regulating Kinase and p38

Wen Hao; Tomoko Takano; Julie Guillemette; Joan Papillon; Guohui Ren; Andrey V. Cybulsky

Expression and activity of the germinal center kinase, Ste20-like kinase (SLK), are increased during kidney development and recovery from ischemic acute renal failure. In this study, we characterize the activation and functional role of SLK. SLK underwent dimerization via the C-terminal domain, and dimerization enhanced SLK activity. In contrast, the C-terminal domain of SLK did not dimerize with a related kinase, Mst1, and did not affect Mst1 activity. Phosphorylation/dephosphorylation of SLK were not associated with changes in kinase activity. SLK induced phosphorylation of apoptosis signal-regulating kinase-1 (ASK1) and increased ASK1 activity, indicating that ASK1 is a substrate of SLK. Moreover, SLK stimulated phosphorylation of p38 mitogen-activated protein kinase via ASK1, but not c-Jun N-terminal kinase nor extracellular signal-regulated kinase. Chemical anoxia and recovery during re-exposure to glucose (ischemia-reperfusion injury in cell culture) stimulated SLK activity. Overexpression of SLK enhanced anoxia/recovery-induced apoptosis, release of cytochrome c, and activities of caspase-8 and -9, and apoptosis was reduced significantly with p38 and caspase-9 inhibitors. Induction of the endoplasmic reticulum stress response by anoxia/recovery or tunicamycin (monitored by induction of Bip or Grp94 expression, phosphorylation of eukaryotic translation initiation factor 2α subunit, expression of CHOP, and activation of caspase-12) was attenuated in cells that overexpress SLK. Thus, SLK is an anoxia/recovery-dependent kinase that is activated via homodimerization and that signals via ASK1 and p38 to promote apoptosis. Attenuation of the protective aspects of the endoplasmic reticulum stress response by SLK may contribute to its proapoptotic effect.


American Journal of Physiology-renal Physiology | 2009

Glomerular epithelial cell injury associated with mutant α-actinin-4

Andrey V. Cybulsky; Tomoko Takano; Joan Papillon; Krikor Bijian; Julie Guillemette; Christopher R.J. Kennedy

Focal segmental glomerulosclerosis (FSGS) may be associated with glomerular epithelial cell (GEC; podocyte) apoptosis due to acquired injury or mutations in alpha-actinin-4. This study addresses how FSGS-associated mutant alpha-actinin-4 may induce GEC injury, focusing on endoplasmic reticulum (ER) stress and metabolism of mutant alpha-actinin-4 via the ubiquitin-proteasome system. In a model of experimental FSGS induced by expression of an alpha-actinin-4 K256E transgene in podocytes, we show induction of ER stress, including upregulation of ER chaperones (bip, grp94), phosphorylation of the eukaryotic translation initiation factor-2alpha subunit, and induction of the proapoptotic gene C/EBP homologous protein-10 (CHOP). To address mechanisms of ER stress, we studied signaling in cultured GEC and COS cells expressing alpha-actinin-4 K256E. Previously, we showed that expression of this alpha-actinin-4 mutant in GEC increased apoptosis. In the present study, we show that alpha-actinin-4 K256E upregulates grp94 and CHOP expression in COS cells and significantly exacerbates induction of bip and CHOP in GEC in the presence of tunicamycin. ER stress was associated with aggregation and ubiquitination of alpha-actinin-4 K256E and impairment of the ubiquitin-proteasome system. In addition, alpha-actinin-4 K256E exacerbated apoptosis in the context of mild proteasome inhibition. Thus alpha-actinin-4 K256E triggers several metabolic abnormalities, which may lead to GEC injury and glomerulosclerosis.


Prostaglandins & Other Lipid Mediators | 2000

Cyclooxygenases-1 and 2 couple to cytosolic but not group IIA phospholipase A2 in COS-1 cells

Tomoko Takano; Mandip Panesar; Joan Papillon; Andrey V. Cybulsky

Phospholipases A2 (PLA2) and cyclooxygenases (COX) are important enzymes responsible for production of potent lipid mediators, including prostaglandins (PG) and thromboxane A2. We investigated coupling between PLA2 and COX isoforms by using transient transfection in COS-1 cells. Untransfected cells, incubated with or without phorbol ester + the Ca2+ ionophore ionomycin, generated trivial amounts of PGE2. In cells co-transfected with cytosolic PLA2 (cPLA2) and COX-1 or COX-2, phorbol ester + ionomycin markedly stimulated PGE2 production. There was no preferential coupling of cPLA2 to either of the COX isoforms. In contrast, group IIA secretory PLA2 (sPLA2) co-transfected with COX-1 or COX-2 did not lead to an increase in PGE2 production, despite high levels of sPLA2 enzymatic activity. Transfection of cPLA2 did not affect basal free arachidonic acid (AA) levels. Phorbol ester + ionomycin stimulated release of AA in cPLA2-transfected COS-1 cells, but not in untransfected cells, whereas sPLA2 transfection (without stimulation) led to high basal free AA. Thus, AA released by cPLA2 is accessible to both COX isoforms for metabolism to PG, whereas AA released by sPLA2 is not metabolized by COX.


American Journal of Pathology | 1999

Complement C5b-9 Induces Receptor Tyrosine Kinase Transactivation in Glomerular Epithelial Cells

Andrey V. Cybulsky; Tomoko Takano; Joan Papillon; Alison J. McTavish

In the passive Heymann nephritis (PHN) model of membranous nephropathy, C5b-9 induces glomerular epithelial cell (GEC) injury and proteinuria, which is partially mediated via production of eicosanoids. Using rat GEC in culture, we demonstrated that sublytic C5b-9 induced tyrosine phosphorylation of the epidermal growth factor receptor (EGF-R), Neu, fibroblast growth factor receptor-2, and hepatocyte growth factor receptor. In addition, C5b-9 stimulated increases in tyrosine(204) phosphorylation of extracellular signal-regulated kinase-2 (ERK2), as well as free [(3)H]arachidonic acid (AA) and prostaglandin E(2) (PGE(2)). Phosphorylated EGF-R bound the adaptor protein, Grb2, and the EGF-R-selective tyrphostin, AG1478, blocked the C5b-9-induced ERK2 phosphorylation, [(3)H]AA release, and PGE(2) production by 45 to 65%, supporting a functional role for EGF-R kinase in mediating the activation of these pathways. Glomeruli isolated from rats with PHN demonstrated increases in ERK2 tyrosine(204) phosphorylation and PGE(2) production, as compared with glomeruli from control rats, and these increases were partially inhibited with AG1478. Thus, C5b-9 induces transactivation of receptor tyrosine kinases, in association with ERK2 activation, AA release, and PGE(2) production in cultured GEC and glomerulonephritis in vivo. Transactivated tyrosine kinases may serve as scaffolds for assembly and/or activation of proteins, which then lead to activation of the ERK2 cascade and AA metabolism.


Physiological Reports | 2013

Nephrin missense mutations: induction of endoplasmic reticulum stress and cell surface rescue by reduction in chaperone interactions.

Tetyana Drozdova; Joan Papillon; Andrey V. Cybulsky

Nephrin, an important component of the podocyte filtration slit diaphragm, plays a key role in the maintenance of glomerular permselectivity. Mutations in nephrin lead to proteinuria and congenital nephrotic syndrome. Nephrin undergoes posttranslational modifications in the endoplasmic reticulum (ER) prior to export to the plasma membrane. We examined the effects of human nephrin disease‐associated missense mutations on nephrin folding in the ER and on cellular trafficking in cultured cells. Compared with wild‐type (WT) nephrin, the mutants showed impaired glycosylation and enhanced association with the ER chaperone, calnexin, as well as accumulation in the ER. Nephrin mutants demonstrated enhanced ubiquitination, and they underwent ER‐associated degradation. Certain nephrin mutants did not traffic to the plasma membrane. Expression of nephrin mutants resulted in the stimulation of the activating transcription factor‐6 pathway of the unfolded protein response, and an increase in the ER chaperone, Grp94. We treated cells with castanospermine (an inhibitor of glucosidase I) in order to decrease the association of nephrin mutants with calnexin. Castanospermine increased plasma membrane expression of nephrin mutants; however, full glycosylation and signaling activity of the mutants were not restored. Modulation of ER quality control mechanisms represents a potential new approach to development of therapies for proteinuric kidney disease, including congenital nephrotic syndrome.


Journal of Biological Chemistry | 2013

Complement-mediated Activation of Calcium-independent Phospholipase A2γ: ROLE OF PROTEIN KINASES AND PHOSPHORYLATION*

Hanan Elimam; Joan Papillon; Tomoko Takano; Andrey V. Cybulsky

Background: Calcium-independent phospholipase A2γ (iPLA2γ) is a mediator of complement-induced glomerular injury. Results: Complement stimulated iPLA2γ through activation of mitogen-activated protein kinases. Conclusion: Phosphorylation of iPLA2γ plays a role in activation and signaling. Significance: Understanding the regulation of iPLA2γ activity is essential for developing novel therapeutic approaches to glomerular injury and proteinuria. In experimental membranous nephropathy, complement C5b-9-induces glomerular epithelial cell (GEC) injury and proteinuria. The effects of C5b-9 are mediated via signaling pathways, including calcium-independent phospholipase A2γ (iPLA2γ), and mitogen-activated protein kinases (MAPKs) such as extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38. The iPLA2γ pathway is cytoprotective. This study addresses the mechanisms of iPLA2γ activation. iPLA2γ activity was monitored by quantifying prostaglandin E2 (PGE2) production. In GECs, iPLA2γ localized at the endoplasmic reticulum and mitochondria. Complement-mediated production of PGE2 was amplified in GECs that overexpress iPLA2γ, compared with control cells, and was blocked by the iPLA2γ inhibitor bromoenol lactone in both iPLA2γ-overexpressing and control GECs. In GECs that overexpress iPLA2γ, complement-mediated PGE2 production was reduced by inhibitors of MAP/ERK kinase 1 (MEK1) and p38 but not JNK. In COS-1 cells that overexpress iPLA2γ and cyclooxygenase-1, PGE2 production was induced by co-expression of constitutively active MEK1 or MAPK-interacting kinase 1 (MNK1) as well as by stimulation with epidermal growth factor (EGF) + ionomycin. Complement- and EGF + ionomycin-stimulated iPLA2γ activity was attenuated by the S511A/S515A double mutation. Moreover, complement and EGF + ionomycin enhanced phosphorylation of Ser-511. Thus, complement-mediated activation of iPLA2γ is mediated via ERK and p38 pathways, and phosphorylation of Ser-511 and/or Ser-515 plays a key role in the catalytic activity and signaling of iPLA2γ. Defining the mechanisms by which complement activates iPLA2γ provides opportunities for development of novel therapeutic approaches to GEC injury and proteinuria.


Biochimica et Biophysica Acta | 2012

Complement modulates the function of the ubiquitin-proteasome system and endoplasmic reticulum-associated degradation in glomerular epithelial cells

Thomas M. Kitzler; Joan Papillon; Julie Guillemette; Simon S. Wing; Andrey V. Cybulsky

In experimental membranous nephropathy, complement C5b-9 induces sublethal glomerular epithelial cell (GEC) injury and proteinuria. C5b-9 also activates mechanisms that restrict injury or facilitate recovery. The ubiquitin-proteasome system (UPS) selectively degrades damaged or abnormal proteins, while misfolded proteins in the endoplasmic reticulum (ER) undergo ER-associated degradation (ERAD). In this study, we investigated the effect of complement on the UPS and ERAD. We monitored UPS function by transfection of rat GECs with a UPS reporter, GFP(u) (CL1 degron fused with green fluorescent protein). By analogy, CD3δ-yellow fluorescent protein (YFP) was employed as a reporter of ERAD. We demonstrated decreased GFP(u) levels in GECs after incubation with antibody and complement, compared with control. Using C8-deficient serum with or without purified C8, cycloheximide (an inhibitor of protein synthesis), and the proteasome inhibitor, MG132, we confirmed that the decrease of GFP(u) was mediated by C5b-9, and subsequent proteasomal degradation of the reporter. Inhibition of the c-Jun N-terminal kinase attenuated the effect of complement on GFP(u) degradation. Complement, however, increased the level of CD3δ-YFP in GECs, implying an impairment of ERAD, likely due to an overabundance of misfolded proteins in the ER. The overall ubiquitination of proteins was enhanced in complement-treated GECs and in glomeruli of rats with experimental membranous nephropathy, although ubiquitin mRNA was unchanged in GECs. Proteasome inhibition with MG132 increased the cytotoxic effect of complement in GECs. Complement-stimulated UPS function, by accelerating removal of damaged proteins, may be a novel mechanism to limit complement-induced injury.


American Journal of Physiology-renal Physiology | 2011

Activity of the Ste20-like kinase, SLK, is enhanced by homodimerization

Sierra Delarosa; Julie Guillemette; Joan Papillon; Ying-Shan Han; Arnold S. Kristof; Andrey V. Cybulsky

The expression and activation of the Ste20-like kinase, SLK, is increased during renal development and recovery from ischemic acute renal failure. SLK promotes apoptosis, and during renal injury and repair, transcriptional induction or posttranscriptional control of SLK may, therefore, regulate cell survival. SLK contains protein interaction (coiled-coil) domains, suggesting that posttranslational homodimerization may also modulate SLK activity. We therefore expressed coiled-coil regions in the C-terminal domain of SLK as fusion proteins and demonstrated their homodimerization. By gel-filtration chromatography, endogenous and heterologously expressed SLK were detected in a macromolecular protein complex. To test the role of homodimerization in kinase activation, we constructed a fusion protein consisting of the SLK catalytic domain (amino acids 1-373) and a modified FK506 binding protein, Fv (Fv-SLK 1-373). Addition of AP20187 (an analog of FK506) enhanced the homodimerization of Fv-SLK 1-373. In an in vitro kinase assay, the dimeric Fv-SLK 1-373 displayed greater kinase activity than the monomeric form. In cells expressing Fv-SLK 1-373, homodimerization increased activation-specific phosphorylation of the proapoptotic kinases, c-Jun N-terminal kinase and p38 kinase. Compared with the monomer, dimeric Fv-SLK 1-373 enhanced the activation of a Bax promoter-luciferase reporter. Finally, expression of Fv-SLK 1-373 induced apoptosis, and the effect was increased by homodimerization. Thus the activity, downstream signaling, and functional effects of SLK are enhanced by dimerization of the kinase domain.


American Journal of Pathology | 2010

Podocyte Injury and Albuminuria in Mice with Podocyte-Specific Overexpression of the Ste20-Like Kinase, SLK

Andrey V. Cybulsky; Tomoko Takano; Joan Papillon; Julie Guillemette; Andrew M. Herzenberg; Chris R. J. Kennedy

SLK expression and activity are increased during kidney development and recovery from renal ischemia-reperfusion injury. In cultured cells, SLK promotes F-actin destabilization as well as apoptosis, partially via the p38 kinase pathway. To better understand the effects of SLK in vivo, a transgenic mouse model was developed where SLK was expressed in a podocyte-specific manner using the mouse nephrin promoter. Offspring of four founder mice carried the SLK transgene. Among male transgenic mice, 66% developed albuminuria at approximately 3 months of age, and the albuminuric mice originated from three of four founders. Overall, the male transgenic mice demonstrated about fivefold greater urinary albumin/creatinine compared with male non-transgenic mice. Transgenic and non-transgenic female mice did not develop albuminuria, suggesting that females were less susceptible to glomerular filtration barrier damage than their male counterparts. In transgenic mice, electron microscopy revealed striking podocyte injury, including poorly formed or effaced foot processes, and edematous and vacuolated cell bodies. By immunoblotting, nephrin expression was decreased in glomeruli of the albuminuric transgenic mice. Activation-specific phosphorylation of p38 was increased in transgenic mice compared with non-transgenic animals. Glomeruli of SLK transgenic mice showed around 30% fewer podocytes, and a reduction in F-actin compared with control glomeruli. Thus, podocyte SLK overexpression in vivo results in injury and podocyte loss, consistent with the effects of SLK in cultured cells.

Collaboration


Dive into the Joan Papillon's collaboration.

Top Co-Authors

Avatar

Andrey V. Cybulsky

McGill University Health Centre

View shared research outputs
Top Co-Authors

Avatar

Tomoko Takano

McGill University Health Centre

View shared research outputs
Top Co-Authors

Avatar

Julie Guillemette

McGill University Health Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomoko Takano

McGill University Health Centre

View shared research outputs
Top Co-Authors

Avatar

Aala Jaberi

McGill University Health Centre

View shared research outputs
Top Co-Authors

Avatar

Abdelkrim Khadir

McGill University Health Centre

View shared research outputs
Top Co-Authors

Avatar

Daniel R. Kaufman

McGill University Health Centre

View shared research outputs
Top Co-Authors

Avatar

Hanan Elimam

McGill University Health Centre

View shared research outputs
Top Co-Authors

Avatar

Lamine Aoudjit

McGill University Health Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge