Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joan Pontius is active.

Publication


Featured researches published by Joan Pontius.


PLOS Genetics | 2011

A Molecular Phylogeny of Living Primates

Polina L. Perelman; Warren E. Johnson; Christian Roos; Héctor N. Seuánez; Julie E. Horvath; Miguel A. M. Moreira; Bailey Kessing; Joan Pontius; Melody E. Roelke; Y. Rumpler; Maria Paula Cruz Schneider; Artur Silva; Stephen J. O'Brien; Jill Pecon-Slattery

Comparative genomic analyses of primates offer considerable potential to define and understand the processes that mold, shape, and transform the human genome. However, primate taxonomy is both complex and controversial, with marginal unifying consensus of the evolutionary hierarchy of extant primate species. Here we provide new genomic sequence (∼8 Mb) from 186 primates representing 61 (∼90%) of the described genera, and we include outgroup species from Dermoptera, Scandentia, and Lagomorpha. The resultant phylogeny is exceptionally robust and illuminates events in primate evolution from ancient to recent, clarifying numerous taxonomic controversies and providing new data on human evolution. Ongoing speciation, reticulate evolution, ancient relic lineages, unequal rates of evolution, and disparate distributions of insertions/deletions among the reconstructed primate lineages are uncovered. Our resolution of the primate phylogeny provides an essential evolutionary framework with far-reaching applications including: human selection and adaptation, global emergence of zoonotic diseases, mammalian comparative genomics, primate taxonomy, and conservation of endangered species.


Genome Research | 2009

Every Genome Sequence Needs a Good Map

Harris A. Lewin; Denis M. Larkin; Joan Pontius; Stephen J. O'Brien

High-resolution physical maps of vertebrate species’ chromosomes empower comparative genomics discovery and are indispensable for sequence assembly precision. Beginning in 2003, the NIH–NHGRI launched an initiative that designated 24 species of mammals for low-coverage whole-genome sequencing in order to provide evolutionary context to human genome annotation (Green 2007) (http://www.genome.gov/25521745). Four principal goals were anticipated for the bold sequencing initiative: (1) to discover evolutionarily conserved sequence motifs, particularly outside of protein-coding genes, which are responsible for regulatory and other critical genomic functions; (2) to provide a framework for reconstruction of genome organization, content, and dynamics that have occurred during the mammalian radiations; (3) to empower new models of human disease and heritable phenotypes; and (4) to provide a starting point for assessment of the expansion, contraction, and adaptation of gene families in different evolutionary lineages.


Trends in Genetics | 2008

State of cat genomics

Stephen J. O'Brien; Warren E. Johnson; Carlos A. Driscoll; Joan Pontius; Jill Pecon-Slattery; Marilyn Menotti-Raymond

Our knowledge of cat family biology was recently expanded to include a genomics perspective with the completion of a draft whole genome sequence of an Abyssinian cat. The utility of the new genome information has been demonstrated by applications ranging from disease gene discovery and comparative genomics to species conservation. Patterns of genomic organization among cats and inbred domestic cat breeds have illuminated our view of domestication, revealing linkage disequilibrium tracks consequent of breed formation, defining chromosome exchanges that punctuated major lineages of mammals and suggesting ancestral continental migration events that led to 37 modern species of Felidae. We review these recent advances here. As the genome resources develop, the cat is poised to make a major contribution to many areas in genetics and biology.


Science | 2012

Specifying and sustaining pigmentation patterns in domestic and wild cats

Christopher B. Kaelin; Xiao Xu; Lewis Z. Hong; Victor A. David; Kelly A. McGowan; Anne Schmidt-Küntzel; Melody E. Roelke; Javier Pino; Joan Pontius; Gregory M. Cooper; Hermogenes Manuel; William F. Swanson; Laurie Marker; Cindy Kim Harper; Ann Van Dyk; Bisong Yue; James C. Mullikin; Wesley C. Warren; Eduardo Eizirik; Lidia Kos; Stephen J. O’Brien; Gregory S. Barsh; Marilyn Menotti-Raymond

What Kitty Shares with Kings Although long-studied, the underlying basis of mammalian coat patterns remains unclear. By studying a large number of cat species and varieties, Kaelin et al. (p. 1536) identified two genes, Taqpep and Edn3, as critical factors in the development of feline pigment patterns. Mutations in Taqpep are responsible for the blotched tabby pattern in domestic cats and the unusual coat of wild king cheetahs. Gene expression patterns in cat and cheetah skin suggest that Edn3 is a likely regulator of felid hair color. The findings support a common model for coat and pigment pattern formation in domestic and wild cats. The genes specifying tabby cat coat patterns also affect big cats, including king cheetahs. Color markings among felid species display both a remarkable diversity and a common underlying periodicity. A similar range of patterns in domestic cats suggests a conserved mechanism whose appearance can be altered by selection. We identified the gene responsible for tabby pattern variation in domestic cats as Transmembrane aminopeptidase Q (Taqpep), which encodes a membrane-bound metalloprotease. Analyzing 31 other felid species, we identified Taqpep as the cause of the rare king cheetah phenotype, in which spots coalesce into blotches and stripes. Histologic, genomic expression, and transgenic mouse studies indicate that paracrine expression of Endothelin3 (Edn3) coordinates localized color differences. We propose a two-stage model in which Taqpep helps to establish a periodic pre-pattern during skin development that is later implemented by differential expression of Edn3.


The Journal of Infectious Diseases | 2011

Genome-Wide Association Study Implicates PARD3B-Based AIDS Restriction

Jennifer L. Troyer; George W. Nelson; James A. Lautenberger; Leslie W. Chinn; Carl McIntosh; Randall C. Johnson; Efe Sezgin; Bailey Kessing; Michael Malasky; Sher L. Hendrickson; Guan Li; Joan Pontius; Minzhong Tang; Ping An; Cheryl A. Winkler; Sophie Limou; Sigrid Le Clerc; Olivier Delaneau; Jean F. Zagury; Hanneke Schuitemaker; Daniëlle van Manen; Jay H. Bream; Edward D. Gomperts; Susan Buchbinder; James J. Goedert; Gregory D. Kirk; Stephen J. O'Brien

BACKGROUND Host genetic variation influences human immunodeficiency virus (HIV) infection and progression to AIDS. Here we used clinically well-characterized subjects from 5 pretreatment HIV/AIDS cohorts for a genome-wide association study to identify gene associations with rate of AIDS progression. METHODS European American HIV seroconverters (n = 755) were interrogated for single-nucleotide polymorphisms (SNPs) (n = 700,022) associated with progression to AIDS 1987 (Cox proportional hazards regression analysis, co-dominant model). RESULTS Association with slower progression was observed for SNPs in the gene PARD3B. One of these, rs11884476, reached genome-wide significance (relative hazard = 0.3; P =3. 370 × 10(-9)) after statistical correction for 700,022 SNPs and contributes 4.52% of the overall variance in AIDS progression in this study. Nine of the top-ranked SNPs define a PARD3B haplotype that also displays significant association with progression to AIDS (hazard ratio, 0.3; P = 3.220 × 10(-8)). One of these SNPs, rs10185378, is a predicted exonic splicing enhancer; significant alteration in the expression profile of PARD3B splicing transcripts was observed in B cell lines with alternate rs10185378 genotypes. This SNP was typed in European cohorts of rapid progressors and was found to be protective for AIDS 1993 definition (odds ratio, 0.43, P = .025). CONCLUSIONS These observations suggest a potential unsuspected pathway of host genetic influence on the dynamics of AIDS progression.


Genomics | 2009

An autosomal genetic linkage map of the domestic cat, Felis silvestris catus.

Marilyn Menotti-Raymond; Victor A. David; Alejandro A. Schäffer; James F. Tomlin; Eduardo Eizirik; Cornel Phillip; David Wells; Joan Pontius; Steven S. Hannah; Stephen J. O'Brien

We report on the completion of an autosomal genetic linkage (GL) map of the domestic cat (Felis silvestris catus). Unlike two previous linkage maps of the cat constructed with a hybrid pedigree between the domestic cat and the Asian leopard cat, this map was generated entirely with domestic cats, using a large multi-generational pedigree (n=256) maintained by the Nestlé Purina PetCare Company. Four hundred eighty-three simple tandem repeat (STR) loci have been assigned to linkage groups on the cats 18 autosomes. A single linkage group spans each autosome. The length of the cat map, estimated at 4370 cM, is long relative to most reported mammalian maps. A high degree of concordance in marker order was observed between the third-generation map and the 1.5 Mb-resolution radiation hybrid (RH) map of the cat. Using the cat 1.9x whole-genome sequence, we identified map coordinates for 85% of the loci in the cat assembly, with high concordance observed in marker order between the linkage map and the cat sequence assembly. The present version represents a marked improvement over previous cat linkage maps as it (i) nearly doubles the number of markers that were present in the second-generation linkage map in the cat, (ii) provides a linkage map generated in a domestic cat pedigree which will more accurately reflect recombination distances than previous maps generated in a hybrid pedigree, and (iii) provides single linkage groups spanning each autosome. Marker order was largely consistent between this and the previous maps, though the use of a hybrid pedigree in the earlier versions appears to have contributed to some suppression of recombination. The improved linkage map will provide an added resource for the mapping of phenotypic variation in the domestic cat and the use of this species as a model system for biological research.


GigaScience | 2014

Annotated features of domestic cat – Felis catus genome

Gaik Tamazian; Serguei Simonov; Pavel Dobrynin; Alexey I. Makunin; Anton Logachev; Aleksey Komissarov; Andrey Shevchenko; Vladimir Brukhin; Nikolay Cherkasov; Anton Svitin; Klaus-Peter Koepfli; Joan Pontius; Carlos A. Driscoll; Kevin Blackistone; Cristina Barr; David Goldman; Agostinho Antunes; Javier Quilez; Belen Lorente-Galdos; Can Alkan; Tomas Marques-Bonet; Marylin Menotti-Raymond; Victor A. David; Kristina Narfström; Stephen J. O’Brien

BackgroundDomestic cats enjoy an extensive veterinary medical surveillance which has described nearly 250 genetic diseases analogous to human disorders. Feline infectious agents offer powerful natural models of deadly human diseases, which include feline immunodeficiency virus, feline sarcoma virus and feline leukemia virus. A rich veterinary literature of feline disease pathogenesis and the demonstration of a highly conserved ancestral mammal genome organization make the cat genome annotation a highly informative resource that facilitates multifaceted research endeavors.FindingsHere we report a preliminary annotation of the whole genome sequence of Cinnamon, a domestic cat living in Columbia (MO, USA), bisulfite sequencing of Boris, a male cat from St. Petersburg (Russia), and light 30× sequencing of Sylvester, a European wildcat progenitor of cat domestication. The annotation includes 21,865 protein-coding genes identified by a comparative approach, 217 loci of endogenous retrovirus-like elements, repetitive elements which comprise about 55.7% of the whole genome, 99,494 new SNVs, 8,355 new indels, 743,326 evolutionary constrained elements, and 3,182 microRNA homologues. The methylation sites study shows that 10.5% of cat genome cytosines are methylated. An assisted assembly of a European wildcat, Felis silvestris silvestris, was performed; variants between F. silvestris and F. catus genomes were derived and compared to F. catus.ConclusionsThe presented genome annotation extends beyond earlier ones by closing gaps of sequence that were unavoidable with previous low-coverage shotgun genome sequencing. The assembly and its annotation offer an important resource for connecting the rich veterinary and natural history of cats to genome discovery.


Vaccine | 2008

Detecting AIDS Restriction Genes: from Candidate Genes to Genome-Wide Association Discovery

Holli Hutcheson; James A. Lautenberger; George W. Nelson; Joan Pontius; Bailey Kessing; Cheryl A. Winkler; Michael W. Smith; Randall C. Johnson; Robert M. Stephens; John P. Phair; James J. Goedert; Sharyne Donfield; Stephen J. O'Brien

The screening of common genetic polymorphisms among candidate genes for AIDS pathology in HIV exposed cohort populations has led to the description of 20 AIDS restriction genes (ARGs), variants that affect susceptibility to HIV infection or to AIDS progression. The combination of high-throughput genotyping platforms and the recent HapMap annotation of some 3 million human SNP variants has been developed for and applied to gene discovery in complex and multi-factorial diseases. Here, we explore novel computational approaches to ARG discovery which consider interacting analytical models, various genetic influences, and SNP-haplotype/LD structure in AIDS cohort populations to determine if these ARGs could have been discovered using an unbiased genome-wide association approach. The procedures were evaluated by tracking the performance of haplotypes and SNPs within ARG regions to detect genetic association in the same AIDS cohort populations in which the ARGs were originally discovered. The methodology captures the signals of multiple non-independent AIDS-genetic association tests of different disease stages and uses association signal strength (odds ratio or relative hazard), statistical significance (p-values), gene influence, internal replication, and haplotype structure together as a multi-facetted approach to identifying important genetic associations within a deluge of genotyping/test data. The complementary approaches perform rather well and predict the detection of a variety of undiscovered ARGs that affect different stages of HIV/AIDS pathogenesis using genome-wide association analyses.


Cytogenetic and Genome Research | 2014

A comprehensive whole-genome integrated cytogenetic map for the alpaca (Lama pacos).

Felipe Avila; Malorie P. Baily; Polina L. Perelman; Pranab J. Das; Joan Pontius; Renuka Chowdhary; Elaine Owens; Warren E. Johnson; David A. Merriwether; Terje Raudsepp

Genome analysis of the alpaca (Lama pacos, LPA) has progressed slowly compared to other domestic species. Here, we report the development of the first comprehensive whole-genome integrated cytogenetic map for the alpaca using fluorescence in situ hybridization (FISH) and CHORI-246 BAC library clones. The map is comprised of 230 linearly ordered markers distributed among all 36 alpaca autosomes and the sex chromosomes. For the first time, markers were assigned to LPA14, 21, 22, 28, and 36. Additionally, 86 genes from 15 alpaca chromosomes were mapped in the dromedary camel (Camelus dromedarius, CDR), demonstrating exceptional synteny and linkage conservation between the 2 camelid genomes. Cytogenetic mapping of 191 protein-coding genes improved and refined the known Zoo-FISH homologies between camelids and humans: we discovered new homologous synteny blocks (HSBs) corresponding to HSA1-LPA/CDR11, HSA4-LPA/CDR31 and HSA7-LPA/CDR36, and revised the location of breakpoints for others. Overall, gene mapping was in good agreement with the Zoo-FISH and revealed remarkable evolutionary conservation of gene order within many human-camelid HSBs. Most importantly, 91 FISH-mapped markers effectively integrated the alpaca whole-genome sequence and the radiation hybrid maps with physical chromosomes, thus facilitating the improvement of the sequence assembly and the discovery of genes of biological importance.


Journal of Heredity | 2009

Artifacts of the 1.93 Feline Genome Assembly Derived from the Feline- Specific Satellite Sequence

Joan Pontius; Stephen J. O'Brien

Two percentage of the cat genome is a repetitive, feline-specific satellite sequence (FA-SAT) of 483 bp and 65% guanine-cytosine content. Previous chromosomal localization of the satellite has demonstrated the satellites presence on several discrete regions of the telomeres of chromosomes, predominately on the D, E, and F chromosome groups. The recent assembly of the 1.9x whole-genome shotgun (WGS) sequence of cat illustrates the challenge of the assembly of these large numbers of relatively short, similar sequences. Clones with paired end reads that include FA-SAT sequence have a high level of assembly discrepancies compared with clones with other types of repetitive elements, such as short interspersed nuclear elements (SINEs) and long interspersed nuclear elements (LINEs). The influence of the presence of FA-SAT but not SINEs and LINEs on genome assembly may likely reflect the evolutionary emergence of FA-SAT, which has lead to an excess of FA-SAT copies with identical sequence, which is less an issue with older, more diverse SINE and LINE sequences. The FA-SATs are restricted to a few hundred discrete regions of the cat genome, and associated errors in the assembly seem to be restricted to these loci. The findings regarding the feline-specific sequence should be considered in the pending 8x assembly of the cat genome.

Collaboration


Dive into the Joan Pontius's collaboration.

Top Co-Authors

Avatar

Stephen J. O'Brien

Saint Petersburg State University

View shared research outputs
Top Co-Authors

Avatar

Bailey Kessing

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Victor A. David

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Warren E. Johnson

Smithsonian Conservation Biology Institute

View shared research outputs
Top Co-Authors

Avatar

James A. Lautenberger

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jill Pecon-Slattery

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Stephen J. O’Brien

Saint Petersburg State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge