Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joan Sánchez-Gurmaches is active.

Publication


Featured researches published by Joan Sánchez-Gurmaches.


General and Comparative Endocrinology | 2008

Metabolic and mitogenic effects of IGF-II in rainbow trout (Oncorhynchus mykiss) myocytes in culture and the role of IGF-II in the PI3K/Akt and MAPK signalling pathways.

Marta Codina; Daniel García de la serrana; Joan Sánchez-Gurmaches; Nuria Montserrat; Oxana Chistyakova; Isabel Navarro; Joaquim Gutiérrez

Primary cultures of rainbow trout skeletal muscle cells were used to examine the role of insulin-like growth factor II (IGF-II) in fish muscle metabolism and growth, and to compare its main signal transduction pathways with those of IGF-I. IGF-II stimulated 2-deoxy-d-glucose (2-DG) uptake in trout myocytes at concentrations of between 5 and 100 nM, with similar maximal effects and temporal pattern to IGF-I (100 nM). The results of incubation with inhibitors (Wortmannin and CKB) indicated that IGF-II stimulates glucose uptake through the same mechanisms as IGF-I. In addition, IGF-II stimulated myoblast DNA synthesis (measured by thymidine incorporation) at relatively low concentrations (0.1-10 nM), with the maximum increase at 1 nM (167+/-17% with respect to control values). The cells were immunoreactive against ERK 1/2 MAPK and Akt/PKB, components of the two main signal transduction pathways for the IGF-I receptor. IGF-II stimulated the phosphorylation of the protein MAPK, especially at the proliferation stage (increases of up to 125.7+/-16.9% and 125.3+/-3.3% with respect to control in IGF-II- and IGF-I-treated cells, respectively). In contrast, the effects of both IGFs on the activation of the PI3K/Akt pathway were stronger in fully differentiated myocytes and in early-formed fibres (up to 359+/-18.5% in IGF-II-treated cells with respect to control). These results indicate that IGF-II has both mitogenic and metabolic effects in trout muscle cells, which are equivalent to those found in response to IGF-I. Both IGFs exert these effects though the same signalling pathways (MAPK and PI3K/Akt).


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2010

Role of insulin and IGF-I on the regulation of glucose metabolism in European sea bass (Dicentrarchus labrax) fed with different dietary carbohydrate levels.

P. Enes; Joan Sánchez-Gurmaches; Isabel Navarro; J. Gutiérrez; Aires Oliva-Teles

The roles of insulin and insulin-like growth factor-I (IGF-I) in the regulation of glucose metabolism were assessed in European sea bass juveniles fed with distinct dietary carbohydrate levels. Three isonitrogenous diets were formulated to contain 10% (10%PGS) or 30% (30%PGS) pregelatinized starch or no starch (control). The highest plasma glucose and insulin levels were observed 6h after feeding in fish receiving the 30%PGS diet. Although plasma IGF-I was higher at 6h than at 24h after feeding, no effect of dietary carbohydrate level was noticed within each sampling time. Increasing dietary carbohydrate level resulted in an increase of liver but not of muscle glycogen content. Hepatic glucokinase (GK) and glucose-6-phosphate dehydrogenase (G6PD) activities increased with the dietary carbohydrate content, whereas pyruvate kinase (PK) activity was higher in fish fed the carbohydrate containing diets than the carbohydrate-free diet. GK activity was higher 6h than 24h after feeding, whereas the opposite was observed for G6PD activity. Data suggest that under the nutritional conditions assayed plasma glucose is an insulin secretagogue. Furthermore, insulin appears to have a more important role than IGF-I in stimulating hepatic glucose uptake, thus enhancing GK activity and leading to an increase in liver glycogen content to maintain glucose homeostasis.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2012

Role of LXR in trout adipocytes: Target genes, hormonal regulation, adipocyte differentiation and relation to lipolysis

Lourdes Cruz-Garcia; Joan Sánchez-Gurmaches; Joaquim Gutiérrez; Isabel Navarro

In the present study, we describe an initial approach to investigate the role of LXR in fish adipose tissue. Rainbow trout (Oncorhynchus mykiss) isolated adipocytes were incubated with LXR agonists, unsaturated fatty acids, tumour necrosis factor-α (TNFα), insulin or growth hormone (GH) for 6h and LXR expression was analyzed. Lipolysis was measured after incubation with one of the LXR agonists and LXR expression was compared with levels of lipolysis. LXR expression was also analyzed during the differentiation of adipocytes in culture. The incubations with agonists in isolated adipocytes indicated that ATP-binding cassette transporter A1 (ABCA1) is an LXR target gene, but lipoprotein lipase (LPL), fatty acid synthase (FAS), hormone-sensitive lipase (HSL) and peroxisome proliferator-activated receptor (PPARs) are not. LXR agonists also induced LXR expression and raised lipolysis levels. Besides, LXR expression was upregulated in parallel with basal lipolysis. LXR mRNA expression was regulated by unsaturated fatty acids, insulin, TNFα and GH in isolated adipocytes. Besides, LXR showed an upregulation during adipocyte differentiation. All these data indicate that LXR is involved in orchestrating the transcriptional regulatory network in trout adipocyte lipid metabolism, specifically, in cholesterol transport, adipocyte differentiation and lipolysis.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2011

Regulation of LXR by fatty acids, insulin, growth hormone and tumor necrosis factor-α in rainbow trout myocytes.

Lourdes Cruz-Garcia; Joan Sánchez-Gurmaches; Joaquim Gutiérrez; Isabel Navarro

The liver X receptor (LXR) has recently been described in salmonids. In mammals, this receptor is already known as a transcriptional factor that regulates diverse aspects of cholesterol, fatty acid and carbohydrate metabolism in various tissues, including muscle. Here we examined LXR in trout myocytes. For this purpose, we analyzed LXR target gene expression and gene profile during myocyte development. In addition, we studied the transcriptional regulation of LXR by hormones, a pro-inflammatory mediator and unsaturated fatty acids. Trout myocytes were incubated with LXR agonists (T091317, 22(R)-hydroxycholesterol) and unsaturated fatty acids for 24h. Furthermore, differentiated myocytes were incubated with insulin and growth hormone (GH) for 3h, 6h and 18h, and with tumor necrosis factor-α (TNFα) for 24h. Samples were also obtained in various stages of cell differentiation. Our results demonstrate that lipoprotein lipase (LPL), fatty acid synthase (FAS), ATP-binding cassette transporter A1 (ABCA1), peroxisome proliferator-activated receptor-α and β (PPARα, β) are target genes of LXR in trout muscle. LXR agonists increased LXR expression, thereby indicating that this receptor is autoregulated. Unsaturated fatty acids downregulated LXR gene expression. This observation suggests a regulatory mechanism of these molecules on LXR-mediated fatty acid synthesis and uptake. TNFα did not modulate LXR gene transcription. Expression of the LXR gene was activated by insulin and GH. These results suggest that LXR may play a lipogenic role through insulin stimulation and a tendency to promote anabolic effects through GH on trout myocytes.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2011

Changes in adipocyte cell size, gene expression of lipid metabolism markers, and lipolytic responses induced by dietary fish oil replacement in gilthead sea bream (Sparus aurata L.)

Lourdes Cruz-Garcia; Joan Sánchez-Gurmaches; Lamia Bouraoui; Alfonso Saera-Vila; Jaume Pérez-Sánchez; Joaquim Gutiérrez; Isabel Navarro

The effects of fish oil (FO) substitution by 66% vegetable oils in a diet with already 75% vegetable protein (66VO) on adipose tissue lipid metabolism of gilthead sea bream were analysed after a 14-month feeding trial. In the last 3 months of the experiment, a FO diet was administrated to a 66VO group (group 66VO/FO) as a finishing diet. Hormone-sensitive lipase (HSL) activity was measured in adipose tissue and adipocyte size, and HSL, lipoprotein lipase and liver X receptor gene expression in isolated adipocytes, on which lipolysis and glucose uptake experiments were also performed. Lipolysis was measured after incubation with tumour necrosis factor-α (TNFα), linoleic acid, and two conjugated linoleic acid isomers. Glucose uptake was analysed after TNFα or insulin administration. Our results show that FO replacement increased lipolytic activity and adipocyte cell size. The higher proportion of large cells observed in the 66VO group could be involved in their observed lower response to fatty acid treatments and lower insulin sensitivity. The 66VO/FO group showed a moderate return to the FO conditions. Therefore, FO replacement can affect the morphology and metabolism of gilthead sea bream adipocytes which could potentially affect other organs such as the liver.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010

Endocrine control of oleic acid and glucose metabolism in rainbow trout (Oncorhynchus mykiss) muscle cells in culture.

Joan Sánchez-Gurmaches; Lourdes Cruz-Garcia; Joaquim Gutiérrez; Isabel Navarro

The effects of insulin and IGF-I on fatty acid (FA) and glucose metabolism were examined using oleic acid or glucose as tracers in differentiated rainbow trout (Oncorhynchus mykiss) myotubes. Insulin and IGF-I significantly reduced the production of CO(2) from oleic acid with respect to the control values. IGF-I also significantly reduced the production of acid-soluble products (ASP) and the concentration of FA in the medium, while cellular triacylglycerols (TAG) tended to increase. Only insulin produced a significant accumulation of glycogen inside the cells in glucose distribution experiments. Incubation with catecholamines did not affect oleic acid metabolism. Cells treated with rapamycin [a target of rapamycin (TOR) inhibitor] significantly increased the oxidation of oleic acid to CO(2) and ASP, while the accumulation of TAG diminished. Rosiglitazone (a peroxisome proliferator-activated receptor gamma agonist) and etomoxir (a CPT-1 inhibitor) produced a severe and significant reduction in the production of CO(2) and ASP. Rosiglitazone and etomoxir also produced a significant accumulation of FA outside and inside the cells, respectively. No significant effects of these drugs on glucose distribution were observed. These data indicate that insulin and IGF-I act as anabolic hormones in trout myotubes in both oleic acid and glucose metabolism, although glucose oxidation appears to be less sensitive than FA oxidation to insulin and IGF-I. The use of rapamycin, etomoxir, and rosiglitazone may help us to understand the mechanisms of regulation of lipid metabolism in fish.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2012

mRNA expression of fatty acid transporters in rainbow trout: in vivo and in vitro regulation by insulin, fasting and inflammation and infection mediators.

Joan Sánchez-Gurmaches; Lourdes Cruz-Garcia; Joaquim Gutiérrez; Isabel Navarro

In the present study, we analyzed endocrine and nutritional regulation of fatty acid (FA) transporters mRNA expression fatty acid transport protein (FATP1) and fatty acid translocase (CD36) in rainbow trout in vivo and in adipocytes and myocytes in vitro. The expression of FATP1 increased with adipocyte and that of CD36 with myocyte in vitro differentiation suggesting a different role for each transporter during the two cell differentiation programs. Food deprivation (15, 25 and 35 days) increased FATP1 and CD36 mRNA expression in white muscle, red muscle and adipose tissue while insulin administration decreased the FATP1 expression in adipose tissue in vivo (21.6 pmol/g body mass) and in vitro (1 μM) in adipocytes. In trout myotubes insulin (1 μM) decreased FATP1 and increased CD36 mRNA expression. Thus, regulation of FA transporters expression by insulin is complex and directed to specific tissue needs. Although FATP1 and CD36 mRNA levels are controlled by insulin, it appears that FATP1 respond more clearly to situations of hyper and hypo-insulinemia in trout muscle and adipose tissue than CD36. FATP1 and CD36 transcription was also modulated by growth hormone in cultured myotubes and isolated adipocytes. Lipopolysaccharide administration (E. coli, serotype O26:B6, 6 μg/g body mass) decreased FATP1 mRNA expression in red muscle, adipose tissue and liver after 24h according to changes in lipid metabolism during infection. Tumor necrosis factor (TNFα) (100 ng/ml) reduced FATP1 expression in isolated adipocytes. Further, insulin (1μM) and IGF-I (100 nM) increased the FA uptake in rainbow trout myotubes through the PI3K/Akt signaling pathway. Overall, we demonstrated not only that feeding condition regulates FATP1 and CD36 mRNA expression in a tissue-specific manner, but also that insulin is an important regulator of these genes in vivo and in vitro and also it stimulates FA uptake in trout muscle cells.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2011

In vivo and in vitro insulin and fasting control of the transmembrane fatty acid transport proteins in Atlantic salmon (Salmo salar)

Joan Sánchez-Gurmaches; Tone-Kari K Østbye; Isabel Navarro; Jacob Torgersen; Ernst Morten Hevrøy; Bente Ruyter; Bente E. Torstensen

We have examined the nutritional and insulin regulation of the mRNA expression of transmembrane fatty acid (FA) transporters [FA transport protein-1 (FATP1) and CD36] together with the lipoprotein lipase (LPL), the cytosolic FA carrier FA binding protein (FABP3), and mitochondrial FA-CoA and -carnitine palmitoyl transferase carriers (CPT)1 and -2 in Atlantic salmon tissues and myocyte cell culture. Two weeks of fasting diminished FATP1, CD36, and LPL in adipose tissue, suggesting a reduction in FA uptake, while FABP3 increased in liver, probably enhancing the transport of FA to the mitochondria. Insulin injection decreased FATP1 and CD36 in white and red muscles, while both transporters were upregulated in the adipose tissue in agreement with the role of insulin-inhibiting muscle FA oxidation and stimulating adipose fat stores. Serum deprivation of 48 h in Atlantic salmon myotubes increased FATP1, FABP3, and CPT-2, while CPT-1 was diminished. In myotubes, insulin induced FATP1 expression but decreased CD36, FABP3, and LPL, suggesting that FATP1 could be more involved in the insulin-stimulated FA uptake. Insulin increased the FA uptake in myotubes mediated, at least in part, through the relocation of FATP1 protein to the plasma membrane. Overall, Atlantic salmon FA transporters are regulated by fasting and insulin on in vivo and in vitro models.


Domestic Animal Endocrinology | 2013

Insulin, IGF-I, and muscle MAPK pathway responses after sustained exercise and their contribution to growth and lipid metabolism regulation in gilthead sea bream

Joan Sánchez-Gurmaches; Lourdes Cruz-Garcia; A. Ibarz; Jaume Fernández-Borràs; Josefina Blasco; J. Gutiérrez; Isabel Navarro

Herein, we studied whether sustained exercise positively affects growth of gilthead sea bream by alterations in a) plasma concentrations of insulin and IGF-I, b) signaling pathways in muscle, or c) regulation of lipid metabolism. Specifically, we evaluated the effects of moderated swimming (1.5 body lengths per second; BL/s) on the circulating concentrations of insulin and IGF-I, morphometric parameters, and expression of genes related to lipid metabolism in gilthead sea bream (80-90 g BW). Exercise increased the specific growth rate (P < 0.05) and reduced the hepatosomatic index (P = 0.006). Plasma IGF-I concentrations increased in exercised fish (P = 0.037), suggesting a role for this endocrine factor in the control of muscular growth and metabolic homeostasis during swimming. The observed decrease in plasma insulin concentrations (P = 0.016) could favor the mobilization of tissue reserves in exercised fish. In this sense, the increase in liver fatty acid content (P = 0.041) and the changes in expression of peroxisome proliferator-activated receptors PPARα (P = 0.017) and PPARγ (P = 0.033) indicated a hepatic lipid mobilization. Concentration of glycogen in both white and red muscles was decreased (P = 0.021 and P = 0.017, respectively) in exercised (n = 12) relative to control (n = 12) gilthead sea bream, whereas concentrations of glucose (P = 0.016) and lactate (P = 0.0007) were decreased only in red muscle, indicating the use of these substrates. No changes in the glucose transporter and in lipoprotein lipase mRNA expression were found in any of the tissues studied. Exercised sea bream had decreased content of PPARβ mRNA in white and red muscle relative to control sea bream expression (P = 0.001 and P = 0.049, respectively). Mitogen-activated protein kinase phosphorylation was significantly down-regulated in both white and red muscles of exercised sea bream (P = 0.0374 and P = 0.0371, respectively). Tumor necrosis factor-α expression of white muscle was down-regulated in exercised gilthead sea bream (P = 0.045). Collectively, these results contribute to the knowledge base about hormonal regulation of growth and lipid metabolism in exercised gilthead sea bream.


Domestic Animal Endocrinology | 2015

Regulation of lipid metabolism and peroxisome proliferator-activated receptors in rainbow trout adipose tissue by lipolytic and antilipolytic endocrine factors

Lourdes Cruz-Garcia; Joan Sánchez-Gurmaches; M. Monroy; J. Gutiérrez; Isabel Navarro

The aim of this study was to determine the effects of growth hormone (GH) and insulin-like growth factor (IGF)-I on glycerol release and the regulation of IGF-I and IGF-II expression by GH in isolated rainbow trout adipocytes. Cells were also incubated with GH, tumor necrosis factor α (TNFα), or insulin to analyze the gene expression of peroxisome proliferator-activated receptors (PPARs) and lipid metabolism markers: hormone sensitive lipase, fatty acid synthase (FAS), and lipoprotein lipase. Complimentary in vivo experiments were performed by intraperitoneally administering insulin, TNFα, or lipopolysaccharide and subjecting the animals to fasting and refeeding periods. The results showed that IGF-I had an antilipolytic effect and GH had a lipolytic effect; the latter occurred independently of IGF modulation and in conjunction with a reduction in PPARα expression in adipocytes. The anabolic action of insulin was demonstrated through its upregulation of lipogenic genes such as lipoprotein lipase, FAS, and PPARγ, whereas GH, by contrast, inhibited FAS expression in adipose tissue. The gene transcription levels of PPARs changed differentially during fasting and refeeding, and the TNFα and/or lipopolysaccharide administration suggested that the regulation of PPARs helps maintain metabolic adipose tissue homeostasis in rainbow trout.

Collaboration


Dive into the Joan Sánchez-Gurmaches's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaume Pérez-Sánchez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge