Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joan T. Richtsmeier is active.

Publication


Featured researches published by Joan T. Richtsmeier.


American Journal of Medical Genetics Part A | 2005

Precision and error of three-dimensional phenotypic measures acquired from 3dMD photogrammetric images

Kristina Aldridge; Simeon A. Boyadjiev; George T. Capone; Valerie B. DeLeon; Joan T. Richtsmeier

The genetic basis for complex phenotypes is currently of great interest for both clinical investigators and basic scientists. In order to acquire a thorough understanding of the translation from genotype to phenotype, highly precise measures of phenotypic variation are required. New technologies, such as 3D photogrammetry are being implemented in phenotypic studies due to their ability to collect data rapidly and non‐invasively. Before these systems can be broadly implemented, the error associated with data collected from images acquired using these technologies must be assessed. This study investigates the precision, error, and repeatability associated with anthropometric landmark coordinate data collected from 3D digital photogrammetric images acquired with the 3dMDface System. Precision, error due to the imaging system, error due to digitization of the images, and repeatability are assessed in a sample of children and adults (n = 15). Results show that data collected from images with the 3dMDface System are highly repeatable and precise. The average error associated with the placement of landmarks is sub‐millimeter; both the error due to digitization and due to the imaging system are very low. The few measures showing a higher degree of error include those crossing the labial fissure, which are influenced by even subtle movement of the mandible. These results suggest that 3D anthropometric data collected using the 3dMDface System are highly reliable and, therefore, useful for evaluation of clinical dysmorphology and surgery, analyses of genotype‐phenotype correlations, and inheritance of complex phenotypes.


Developmental Dynamics | 2000

Parallels of craniofacial maldevelopment in Down syndrome and Ts65Dn mice.

Joan T. Richtsmeier; Laura L. Baxter; Roger H. Reeves

Mouse genetic models can be used to dissect molecular mechanisms that result in human disease. This approach requires detection and demonstration of compelling parallels between phenotypes in mouse and human. Ts65Dn mice are at dosage imbalance for many of the same genes duplicated in trisomy 21 or Down syndrome (DS), the most common live‐born human aneuploidy. Analysis of the craniofacial skeleton of Ts65Dn mice using three‐dimensional morphometric methods demonstrates an absolute correspondence between Ts65Dn and DS craniofacial dysmorphology, a distinctive and completely penetrant DS phenotype. The genes at dosage imbalance in Ts65Dn are localized to a small region of mouse chromosome 16 and, by comparative mapping, to the corresponding region of human Chromosome 21, providing independent experimental data supporting the contribution of genes in this region to this characteristic DS phenotype. This analysis establishes precise parallels in human and mouse skull phenotypes resulting from dosage imbalance for the same genes, revealing strong conservation of the evolved developmental genetic program that underlies mammalian skull morphology and validating the use of this mouse model in the analysis of this important DS phenotype. This evolutionary conservation further establishes the mouse as a valid model for a wide range of syndromes producing craniofacial maldevelopment. Dev Dyn;217:137–145.


Development | 2005

Abnormalities in cartilage and bone development in the Apert syndrome FGFR2+/S252W mouse

Yingli Wang; Ran Xiao; Fan Yang; Baktiar O. Karim; Anthony J. Iacovelli; Juanliang Cai; Charles P. Lerner; Joan T. Richtsmeier; Jen M. Leszl; Cheryl A. Hill; Kai Yu; David M. Ornitz; Jennifer H. Elisseeff; David L. Huso; Ethylin Wang Jabs

Apert syndrome is an autosomal dominant disorder characterized by malformations of the skull, limbs and viscera. Two-thirds of affected individuals have a S252W mutation in fibroblast growth factor receptor 2 (FGFR2). To study the pathogenesis of this condition, we generated a knock-in mouse model with this mutation. The Fgfr2+/S252W mutant mice have abnormalities of the skeleton, as well as of other organs including the brain, thymus, lungs, heart and intestines. In the mutant neurocranium, we found a midline sutural defect and craniosynostosis with abnormal osteoblastic proliferation and differentiation. We noted ectopic cartilage at the midline sagittal suture, and cartilage abnormalities in the basicranium, nasal turbinates and trachea. In addition, from the mutant long bones, in vitro cell cultures grown in osteogenic medium revealed chondrocytes, which were absent in the controls. Our results suggest that altered cartilage and bone development play a significant role in the pathogenesis of the Apert syndrome phenotype.


The Cleft Palate-Craniofacial Journal | 1995

Precision, repeatability, and validation of the localization of cranial landmarks using computed tomography scans.

Joan T. Richtsmeier; Chul H. Paik; Peter C. Elfert; Theodore M. Cole; Holly R. Dahlman

Computed tomography (CT) has brought to the craniofacial surgeon a three-dimensional representation of internal structures. CT scans provide visualization of anatomy for preoperative planning and postoperative evaluation. Beyond visualization, however, a CT scan enables assessment of measurements useful to clinicians and basic scientists. All measurement systems used with CT require the ability to accurately locate regions of interest on the image (i.e., areas, volumes, outlines, curves, surfaces, points). This study evaluates the precision and repeatability of locating anatomic landmarks in three dimensions on CT slice images, and validates these locations using an established measurement system. The average error of landmark position is always less than 0.5 mm and for some landmarks error is negligible. Repeatability studies show that less than 2% of the total variance in our data is due to measurement inaccuracy. Although data collected from CT scans are internally consistent, validation results caution the use of CT data in combination with data collected using calipers or other direct means of measurement.


Trends in Genetics | 2001

Too much of a good thing: mechanisms of gene action in Down syndrome

Roger H. Reeves; Laura L. Baxter; Joan T. Richtsmeier

The molecular mechanisms underlying the specific traits in individuals with Down syndrome (DS) have been postulated to derive either from nonspecific perturbation of balanced genetic programs, or from the simple, mendelian-like influence of a small subset of genes on chromosome 21. However, these models do not provide a comprehensive explanation for experimental or clinical observations of the effects of trisomy 21. DS is best viewed as a complex genetic disorder, where the specific phenotypic manifestations in a given individual are products of genetic, environmental and stochastic influences. Mouse models that recapitulate both the genetic basis for and the phenotypic consequences of trisomy provide an experimental system to define these contributions.


Journal of Anatomy | 2002

Central nervous system phenotypes in craniosynostosis

Kristina Aldridge; Marsh Jl; Daniel Govier; Joan T. Richtsmeier

Though reduction in the number of cranial elements through loss of a suture is a recognized trend in vertebrate evolution, the premature closure of cranial sutures in humans, craniosynostosis, is considered a pathological condition. Previous research on craniosynostosis has focused primarily on the skeletal phenotype, but the intimate relationship between the developing central nervous system (CNS) and skull is well documented. We investigate the morphology of the CNS in patients with isolated craniosynostosis through an analysis of cortical and subcortical features using 3‐D magnetic resonance images (MRI). Results show that a distinct CNS phenotype can be defined for specific diagnostic categories. Many differences in CNS morphology observed in the patient samples may be anticipated based on skeletal morphology, but others are not reflected in the skull. We propose a developmental approach to determining the cause of premature suture fusion, which includes investigation of the craniofacial complex as a system, rather than study of isolated tissues.


Evolutionary Biology-new York | 2007

Phenotypic Variability: Its Components, Measurement and Underlying Developmental Processes

Katherine E. Willmore; Nathan M. Young; Joan T. Richtsmeier

Variability contrasts with variation in that variability describes the potential for variation, not simply the expressed variation. The power of studying variability lies in creating a conceptual framework around which the relationship between the genotype and phenotype can be understood. Here, we attempt to demonstrate the importance of phenotypic variability, how it structures variation, and how fundamental developmental processes structure variability. Given the broad scope of this topic, we focus on three widely studied properties of variability: canalization, developmental stability and morphological integration. We have organized the paper to emphasize the importance of differentiating between the theory surrounding these components of phenotypic variability, their measurement and the biological factors surrounding their expression. First, we define these properties of variability, how they relate to each other and to variability as a whole. Second, we summarize the common methods of measurement for canalization, developmental stability and morphological integration and the reasoning behind these methods. Finally, we focus on jaw development as an example of how the basic processes of development affect variability and the resultant variation, with emphasis on how processes at all levels of the organismal hierarchy interact with one another and contribute to phenotypic variability.


American Journal of Physical Anthropology | 1998

Capturing data from three‐dimensional surfaces using fuzzy landmarks

Valeri Cj; Theodore M. Cole; Subhash R. Lele; Joan T. Richtsmeier

Anatomical landmarks are defined as biologically meaningful loci that can be unambiguously defined and repeatedly located with a high degree of accuracy and precision. The neurocranial surface is characteristically void of such loci. We define a new class of landmarks, termed fuzzy landmarks, that will allow us to represent the form of the neurocranium. A fuzzy landmark represents the position of a biological structure that is precisely delineated, but occupies an area that is larger than a single point in the observers reference system. In this study, we present a test case in which the cranial bosses are evaluated as fuzzy landmarks. Five fuzzy landmarks (the cranial bosses) and three traditional landmarks were placed repeatedly by a single observer on three-dimensional (3D) computed tomography (CT) surface reconstructions of pediatric dry skulls and skulls of pediatric patients, and directly on four of the same dry skulls using a 3Space digitizer. Thirty landmark digitizing trials from CT scans show an average error of 1.15 mm local to each fuzzy landmark, while the average error for the last ten trials was 0.75 mm, suggesting a learning curve. Data collected with the 3Space digitizer was comparable. Measurement error of fuzzy landmarks is larger than that of traditional landmarks, but is acceptable, especially since fuzzy landmarks allow inclusion of areas that would otherwise go unsampled. The information obtained is valuable in growth studies, clinical evaluation, and volume measurements. Our method of fuzzy landmarking is not limited to cranial bosses, and can be applied to any other anatomical features with fuzzy boundaries.


Nature Genetics | 2012

A genome-wide association study identifies susceptibility loci for nonsyndromic sagittal craniosynostosis near BMP2 and within BBS9

Cristina M. Justice; Garima Yagnik; Yoonhee Kim; Inga Peter; Ethylin Wang Jabs; Monica Erazo; Xiaoqian Ye; Edmond Ainehsazan; Lisong Shi; Michael L. Cunningham; Virginia E. Kimonis; Tony Roscioli; Steven A. Wall; Andrew O.M. Wilkie; Joan M. Stoler; Joan T. Richtsmeier; Yann Heuzé; Pedro A. Sanchez-Lara; Michael F. Buckley; Charlotte M. Druschel; James L. Mills; Michele Caggana; Paul A. Romitti; Denise M. Kay; Craig W. Senders; Peter J. Taub; Ophir D. Klein; James E. Boggan; Marike Zwienenberg-Lee; Cyrill Naydenov

Sagittal craniosynostosis is the most common form of craniosynostosis, affecting approximately one in 5,000 newborns. We conducted, to our knowledge, the first genome-wide association study for nonsyndromic sagittal craniosynostosis (sNSC) using 130 non-Hispanic case-parent trios of European ancestry (NHW). We found robust associations in a 120-kb region downstream of BMP2 flanked by rs1884302 (P = 1.13 × 10−14, odds ratio (OR) = 4.58) and rs6140226 (P = 3.40 × 10−11, OR = 0.24) and within a 167-kb region of BBS9 between rs10262453 (P = 1.61 × 10−10, OR = 0.19) and rs17724206 (P = 1.50 × 10−8, OR = 0.22). We replicated the associations to both loci (rs1884302, P = 4.39 × 10−31 and rs10262453, P = 3.50 × 10−14) in an independent NHW population of 172 unrelated probands with sNSC and 548 controls. Both BMP2 and BBS9 are genes with roles in skeletal development that warrant functional studies to further understand the etiology of sNSC.


Developmental Dynamics | 2013

Angiogenesis and Intramembranous Osteogenesis

Christopher J. Percival; Joan T. Richtsmeier

Background: Angiogenesis is likely critical for the process of intramembranous osteogenesis; however, the developmental relationship between blood vessels and bone mineralization is not well studied within intramembranous bones. Given its importance, changes in angiogenesis regulation are likely to contribute to evolutionarily and medically relevant craniofacial variation. Results: We summarize what is known about the association between angiogenesis and intramembranous osteogenesis, supplementing with information from the better‐studied processes of endochondral ossification and distraction osteogenesis. Based on this review, we introduce a model of angiogenesis during early intramembranous osteogenesis as well as a series of null hypotheses to be tested. Conclusions: This model can serve as a basis of future research on the spatio‐temporal association and regulatory interactions of mesenchymal, vascular, and bone cells, which will be required to illuminate the potential effects of angiogenesis dysregulation on craniofacial skeletal phenotypes. Developmental Dynamics 242:909–922, 2013.

Collaboration


Dive into the Joan T. Richtsmeier's collaboration.

Top Co-Authors

Avatar

Ethylin Wang Jabs

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roger H. Reeves

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yingli Wang

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Theodore M. Cole

University of Missouri–Kansas City

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge