Joana Castro
University of Minho
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joana Castro.
The Journal of Infectious Diseases | 2014
Patrícia Maria Alves; Joana Castro; Cármen Sousa; Tatiana Barros Reis Cereija; Nuno Cerca
Despite the worldwide prevalence of bacterial vaginosis (BV), its etiology is still unknown. Although BV has been associated with the presence of biofilm, the ability of BV-associated bacteria to form biofilms is still largely unknown. Here, we isolated 30 BV-associated species and characterized their virulence, using an in vitro biofilm formation model. Our data suggests that Gardnerella vaginalis had the highest virulence potential, as defined by higher initial adhesion and cytotoxicity of epithelial cells, as well as the greater propensity to form a biofilm. Interestingly, we also demonstrated that most of the BV-associated bacteria had a tendency to grow as biofilms.
International Journal of Medical Sciences | 2013
Joana Castro; Ana Filipa Frutuoso Mendes Henriques; António Machado; Mariana Henriques; Kimberly K. Jefferson; Nuno Cerca
Bacterial vaginosis (BV) is the most common vaginal disorder in women of child-bearing age. It is widely accepted that the microbial switch from normal microflora to the flora commonly associated with BV is characterized by a decrease in vaginal colonization by specific Lactobacillus species together with an increase of G. vaginalis and other anaerobes. However, the order of events leading to the development of BV remains poorly characterized and it is unclear whether the decrease in lactobacilli is a cause or a consequence of the increase in the population density of anaerobes. Our goal was to characterize the interaction between two Gardnerella vaginalis strains, one of which was isolated from a healthy woman (strain 5-1) and the other from a woman diagnosed with BV (strain 101), and vaginal lactobacilli on the adherence to cervical epithelial cells. In order to simulate the transition from vaginal health to BV, the lactobacilli were cultured with the epithelial cells first, and then the G. vaginalis strain was introduced. We quantified the inhibition of G. vaginalis adherence by the lactobacilli and displacement of adherent lactobacilli by G. vaginalis. Our results confirmed that pathogenic G vaginalis 101 had a higher capacity for adhesion to the cervical epithelial cells than strain 5-1. Interestingly, strain 101 displaced L. crispatus but not L. iners whereas strain 5-1 had less of an effect and did not affect the two species differently. Furthermore, L. iners actually enhanced adhesion of strain 101 but not of strain 5-1. These results suggest that BV-causing G. vaginalis and L. iners do not interfere with one another, which may help to explain previous reports that women who are colonized with L. iners are more likely to develop BV.
BMC Genomics | 2014
Teija Ojala; Matti Kankainen; Joana Castro; Nuno Cerca; Sanna Edelman; Benita Westerlund-Wikström; Lars Paulin; Liisa Holm; Petri Auvinen
BackgroundLactobacillus crispatus is a ubiquitous micro-organism encountered in a wide range of host-associated habitats. It can be recovered from the gastrointestinal tract of animals and it is a common constituent of the vaginal microbiota of humans. Moreover, L. crispatus can contribute to the urogenital health of the host through competitive exclusion and the production of antimicrobial agents. In order to investigate the genetic diversity of this important urogenital species, we performed a comparative genomic analysis of L. crispatus.ResultsUtilizing the completed genome sequence of a strain ST1 and the draft genome sequences of nine other L. crispatus isolates, we defined the scale and scope of the pan- and core genomic potential of L. crispatus. Our comparative analysis identified 1,224 and 2,705 ortholog groups present in all or only some of the ten strains, respectively. Based on mathematical modeling, sequencing of additional L. crispatus isolates would result in the identification of new genes and functions, whereas the conserved core of the ten strains was a good representation of the final L. crispatus core genome, estimated to level at about 1,116 ortholog groups. Importantly, the current core was observed to encode bacterial components potentially promoting urogenital health. Using antibody fragments specific for one of the conserved L. crispatus adhesins, we demonstrated that the L. crispatus core proteins have a potential to reduce the ability of Gardnerella vaginalis to adhere to epithelial cells. These findings thereby suggest that L. crispatus core proteins could protect the vagina from G. vaginalis and bacterial vaginosis.ConclusionsOur pan-genome analysis provides insights into the intraspecific genome variability and the collective molecular mechanisms of the species L. crispatus. Using this approach, we described the differences and similarities between the genomes and identified features likely to be important for urogenital health. Notably, the conserved genetic backbone of L. crispatus accounted for close to 60% of the ortholog groups of an average L. crispatus strain and included factors for the competitive exclusion of G. vaginalis, providing an explanation on how this urogenital species could improve vaginal health.
Frontiers in Microbiology | 2016
Daniela Machado; Joana Castro; Ana Palmeira-de-Oliveira; José Martinez-de-Oliveira; Nuno Cerca
Bacterial vaginosis (BV) is the most common genital tract infection in women during their reproductive years and it has been associated with serious health complications, such as preterm delivery and acquisition or transmission of several sexually transmitted agents. BV is characterized by a reduction of beneficial lactobacilli and a significant increase in number of anaerobic bacteria, including Gardnerella vaginalis, Atopobium vaginae, Mobiluncus spp., Bacteroides spp. and Prevotella spp.. Being polymicrobial in nature, BV etiology remains unclear. However, it is certain that BV involves the presence of a thick vaginal multi-species biofilm, where G. vaginalis is the predominant species. Similar to what happens in many other biofilm-related infections, standard antibiotics, like metronidazole, are unable to fully eradicate the vaginal biofilm, which can explain the high recurrence rates of BV. Furthermore, antibiotic therapy can also cause a negative impact on the healthy vaginal microflora. These issues sparked the interest in developing alternative therapeutic strategies. This review provides a quick synopsis of the currently approved and available antibiotics for BV treatment while presenting an overview of novel strategies that are being explored for the treatment of this disorder, with special focus on natural compounds that are able to overcome biofilm-associated antibiotic resistance.
Scientific Reports | 2015
Joana Castro; Patrícia Maria Alves; Cármen Sousa; Tatiana Barros Reis Cereija; Ângela Maria Oliveira Sousa França; Kimberly K. Jefferson; Nuno Cerca
Gardnerella vaginalis is the most common species found in bacterial vaginosis (BV). However, it is also present in a significant proportion of healthy women and G. vaginalis vaginal colonization does not always lead to BV. In an effort to better understand the differences between G. vaginalis isolated from women with a positive (BV) versus a negative (non-BV) diagnosis of BV, we compared the virulence potential of 7 BV and 7 non-BV G. vaginalis isolates and assessed the virulence factors related to biofilm formation, namely: initial adhesion and cytotoxic effect, biofilm accumulation, susceptibility to antibiotics, and transcript levels of the known vaginolysin, and sialidase genes. Furthermore, we also determined the ability of G. vaginalis to displace lactobacilli previously adhered to HeLa cells. Our results showed that non-BV strains were less virulent than BV strains, as suggested by the lower cytotoxicity and initial adhesion to Hela cells. Significant differences in expression of known virulence genes were also detected, further suggesting a higher virulence potential of the BV associated G. vaginalis. Importantly, we demonstrated that BV associated G. vaginalis were able to displace pre-coated vaginal protective lactobacilli and we hypothesize this to be a trigger for BV development.
Fems Immunology and Medical Microbiology | 2016
Joana Castro; Daniela Machado; Nuno Cerca
Gardnerella vaginalis is the most frequent microorganism found in bacterial vaginosis (BV), while Escherichia coli and Enterococcus faecalis are amongst the most frequent pathogens found in urinary tract infections (UTIs). This study aimed to evaluate possible interactions between UTIs pathogens and G. vaginalis using an in vitro dual-species biofilm model. Our results showed that dual-species biofilms reached significantly higher bacterial concentration than monospecies biofilms. Moreover, visualization of dual-populations species in the biofilms, using the epifluorescence microscopy, revealed that all of the urogenital pathogens coexisted with G. vaginalis. In conclusion, our work demonstrates that uropathogens can incorporate into mature BV biofilms.
PeerJ | 2015
António Machado; Joana Castro; Tatiana Barros Reis Cereija; Carina Almeida; Nuno Cerca
Bacterial vaginosis (BV) is one of most common vaginal infections. However, its diagnosis by classical methods reveals low specificity. Our goal was to evaluate the accuracy diagnosis of 150 vaginal samples with research gold standard methods and our Peptide Nucleic Acid (PNA) probes by Fluorescence in situ Hybridization (FISH) methodology. Also, we described the first PNA-FISH methodology for BV diagnosis, which provides results in approximately 3 h. The results showed a sensitivity of 84.6% (95% confidence interval (CI), from 64.3 to 95.0%) and a specificity of 97.6% (95% CI [92.6–99.4%]), demonstrating the higher specificity of the PNA-FISH method and showing false positive results in BV diagnosis commonly obtained by the classical methods. This methodology combines the specificity of PNA probes for Lactobacillus species and G. vaginalis visualization and the calculation of the microscopic field by Nugent score, allowing a trustful evaluation of the bacteria present in vaginal microflora and avoiding the occurrence of misleading diagnostics. Therefore, the PNA-FISH methodology represents a valuable alternative for BV diagnosis.
Anaerobe | 2015
Joana Castro; Nuno Cerca
Dual-species biofilm formation between Gardnerella vaginalis strains isolated from women with or without bacterial vaginosis (BV) and other 24 BV-associated microorganisms support that the key difference in virulence potential between BV-negative and BV-positive G. vaginalis strains seems not to be related with biofilm maturation.
Sexually Transmitted Infections | 2013
Tatiana Barros Reis Cereija; Joana Castro; Patrícia Maria Alves; Nuno Cerca
Bacterial vaginosis (BV) is one of the most common infections in women of reproductive age. Clinical studies have shown an association among BV and abnormal pregnancy, pelvic inflammatory disease and an increased risk of sexually transmitted infections, including HIV.1 This disorder was first described in 1914 by Curtis as a ‘white discharge’ syndrome2 and despite the decades of research we have only limited, and clearly not conclusive, evidence of microbial cause of BV, mechanism of disease and effective treatment. The development of molecular techniques such as Denaturing Gradient Gel Electrophoresis (DGGE) and DNA sequencing produced a clearer picture of the …
PeerJ | 2017
Daniela Machado; Joana Castro; José Martinez-de-Oliveira; Cristina Nogueira-Silva; Nuno Cerca
Background We aimed to determine the prevalence of vaginal colonization by Gardnerella vaginalis and of bacterial vaginosis (BV) in Portuguese pregnant women, and to identify risk factors for BV and G. vaginalis colonization in pregnancy. Methods A cross-sectional study was conducted among pregnant women aged ≥ 18 years who were attending in two public hospitals of the Northwest region of Portugal. Epidemiological data was collected by anonymous questionnaire. BV was diagnosed by Nugent criteria and G. vaginalis presence was identified by polymerase chain reaction. Crude associations between the study variables and BV or G. vaginalis colonization were quantified by odds ratios (ORs) and their 95% confidence intervals (CIs). Results The prevalences of BV and of G. vaginalis colonization among Portuguese pregnant women were 3.88% and 67.48%, respectively. Previous preterm delivery and colonization by G. vaginalis were factors with very high OR, but only statistically significant for a 90% CI. Conversely, higher rates of G. vaginalis colonization were found in women with basic educational level (OR = 2.77, 95% CI [1.33–5.78]), during the second trimester of pregnancy (OR = 6.12, 95% CI [1.80–20.85]) and with BV flora (OR = 8.73, 95% CI [0.50–153.60]). Discussion Despite the lower number of women with BV, prevalence ratios and association with risk factors were similar to recent European studies. However, the percentage of healthy women colonized by G. vaginalis was significantly higher than many previous studies, confirming that G. vaginalis colonization does not always lead to BV development.