Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joana F. Guerreiro is active.

Publication


Featured researches published by Joana F. Guerreiro.


Nucleic Acids Research | 2014

The YEASTRACT database: an upgraded information system for the analysis of gene and genomic transcription regulation in Saccharomyces cerevisiae

Miguel C. Teixeira; Pedro T. Monteiro; Joana F. Guerreiro; Joana P. Gonçalves; Nuno P. Mira; Sandra Costa dos Santos; Tânia R. Cabrito; Margarida Palma; Catarina Costa; Alexandre P. Francisco; Sara C. Madeira; Arlindo L. Oliveira; Ana T. Freitas; Isabel Sá-Correia

The YEASTRACT (http://www.yeastract.com) information system is a tool for the analysis and prediction of transcription regulatory associations in Saccharomyces cerevisiae. Last updated in June 2013, this database contains over 200 000 regulatory associations between transcription factors (TFs) and target genes, including 326 DNA binding sites for 113 TFs. All regulatory associations stored in YEASTRACT were revisited and new information was added on the experimental conditions in which those associations take place and on whether the TF is acting on its target genes as activator or repressor. Based on this information, new queries were developed allowing the selection of specific environmental conditions, experimental evidence or positive/negative regulatory effect. This release further offers tools to rank the TFs controlling a gene or genome-wide response by their relative importance, based on (i) the percentage of target genes in the data set; (ii) the enrichment of the TF regulon in the data set when compared with the genome; or (iii) the score computed using the TFRank system, which selects and prioritizes the relevant TFs by walking through the yeast regulatory network. We expect that with the new data and services made available, the system will continue to be instrumental for yeast biologists and systems biology researchers.


Microbial Cell Factories | 2010

Genome-wide identification of Saccharomyces cerevisiae genes required for tolerance to acetic acid

Nuno P. Mira; Margarida Palma; Joana F. Guerreiro; Isabel Sá-Correia

BackgroundAcetic acid is a byproduct of Saccharomyces cerevisiae alcoholic fermentation. Together with high concentrations of ethanol and other toxic metabolites, acetic acid may contribute to fermentation arrest and reduced ethanol productivity. This weak acid is also a present in lignocellulosic hydrolysates, a highly interesting non-feedstock substrate in industrial biotechnology. Therefore, the better understanding of the molecular mechanisms underlying S. cerevisiae tolerance to acetic acid is essential for the rational selection of optimal fermentation conditions and the engineering of more robust industrial strains to be used in processes in which yeast is explored as cell factory.ResultsThe yeast genes conferring protection against acetic acid were identified in this study at a genome-wide scale, based on the screening of the EUROSCARF haploid mutant collection for susceptibility phenotypes to this weak acid (concentrations in the range 70-110 mM, at pH 4.5). Approximately 650 determinants of tolerance to acetic acid were identified. Clustering of these acetic acid-resistance genes based on their biological function indicated an enrichment of genes involved in transcription, internal pH homeostasis, carbohydrate metabolism, cell wall assembly, biogenesis of mitochondria, ribosome and vacuole, and in the sensing, signalling and uptake of various nutrients in particular iron, potassium, glucose and amino acids. A correlation between increased resistance to acetic acid and the level of potassium in the growth medium was found. The activation of the Snf1p signalling pathway, involved in yeast response to glucose starvation, is demonstrated to occur in response to acetic acid stress but no evidence was obtained supporting the acetic acid-induced inhibition of glucose uptake.ConclusionsApproximately 490 of the 650 determinants of tolerance to acetic acid identified in this work are implicated, for the first time, in tolerance to this weak acid. These are novel candidate genes for genetic engineering to obtain more robust yeast strains against acetic acid toxicity. Among these genes there are number of transcription factors that are documented regulators of a large percentage of the genes found to exert protection against acetic acid thus being considered interesting targets for subsequent genetic engineering. The increase of potassium concentration in the growth medium was found to improve the expression of maximal tolerance to acetic acid, consistent with the idea that the adequate manipulation of nutrient concentration of industrial growth medium can be an interesting strategy to surpass the deleterious effects of this weak acid in yeast cells.


DNA Research | 2014

The Genome Sequence of the Highly Acetic Acid-Tolerant Zygosaccharomyces bailii-Derived Interspecies Hybrid Strain ISA1307, Isolated From a Sparkling Wine Plant

Nuno P. Mira; Martin Münsterkötter; Filipa Dias-Valada; Júlia Santos; Margarida Palma; Filipa de Canaveira Roque; Joana F. Guerreiro; Fernando Rodrigues; Maria João Sousa; Cecília Leão; Ulrich Güldener; Isabel Sá-Correia

In this work, it is described the sequencing and annotation of the genome of the yeast strain ISA1307, isolated from a sparkling wine continuous production plant. This strain, formerly considered of the Zygosaccharomyces bailii species, has been used to study Z. bailii physiology, in particular, its extreme tolerance to acetic acid stress at low pH. The analysis of the genome sequence described in this work indicates that strain ISA1307 is an interspecies hybrid between Z. bailii and a closely related species. The genome sequence of ISA1307 is distributed through 154 scaffolds and has a size of around 21.2 Mb, corresponding to 96% of the genome size estimated by flow cytometry. Annotation of ISA1307 genome includes 4385 duplicated genes (∼90% of the total number of predicted genes) and 1155 predicted single-copy genes. The functional categories including a higher number of genes are ‘Metabolism and generation of energy’, ‘Protein folding, modification and targeting’ and ‘Biogenesis of cellular components’. The knowledge of the genome sequence of the ISA1307 strain is expected to contribute to accelerate systems-level understanding of stress resistance mechanisms in Z. bailii and to inspire and guide novel biotechnological applications of this yeast species/strain in fermentation processes, given its high resilience to acidic stress. The availability of the ISA1307 genome sequence also paves the way to a better understanding of the genetic mechanisms underlying the generation and selection of more robust hybrid yeast strains in the stressful environment of wine fermentations.


Proteomics | 2012

Adaptive response to acetic acid in the highly resistant yeast species Zygosaccharomyces bailii revealed by quantitative proteomics

Joana F. Guerreiro; Nuno P. Mira; Isabel Sá-Correia

Zygosaccharomyces bailii is the most tolerant yeast species to acetic acid‐induced toxicity, being able to grow in the presence of concentrations of this food preservative close to the legal limits. For this reason, Z. bailii is the most important microbial contaminant of acidic food products but the mechanisms behind this intrinsic resistance to acetic acid are very poorly characterized. To gain insights into the adaptive response and tolerance to acetic acid in Z. bailii, we explored an expression proteomics approach, based on quantitative 2DE, to identify alterations occurring in the protein content in response to sudden exposure or balanced growth in the presence of an inhibitory but nonlethal concentration of this weak acid. A coordinate increase in the content of proteins involved in cellular metabolism, in particular, in carbohydrate metabolism (Mdh1p, Aco1p, Cit1p, Idh2p, and Lpd1p) and energy generation (Atp1p and Atp2p), as well as in general and oxidative stress response (Sod2p, Dak2p, Omp2p) was registered. Results reinforce the concept that glucose and acetic acid are coconsumed in Z. bailii, with acetate being channeled into the tricarboxylic acid cycle. When acetic acid is the sole carbon source, results suggest the activation of gluconeogenic and pentose phosphate pathways, based on the increased content of several proteins of these pathways after glucose exhaustion.


BMC Genomics | 2017

The Zygosaccharomyces bailii transcription factor Haa1 is required for acetic acid and copper stress responses suggesting subfunctionalization of the ancestral bifunctional protein Haa1/Cup2.

Margarida Palma; Paulo Jorge Dias; Filipa de Canaveira Roque; Laura Luzia; Joana F. Guerreiro; Isabel Sá-Correia

BackgroundThe food spoilage yeast species Zygosaccharomyces bailii exhibits an extraordinary capacity to tolerate weak acids, in particular acetic acid. In Saccharomyces cerevisiae, the transcription factor Haa1 (ScHaa1) is considered the main player in genomic expression reprogramming in response to acetic acid stress, but the role of its homologue in Z. bailii (ZbHaa1) is unknown.ResultsIn this study it is demonstrated that ZbHaa1 is a ScHaa1 functional homologue by rescuing the acetic acid susceptibility phenotype of S. cerevisiae haa1Δ. The disruption of ZbHAA1 in Z. bailii IST302 and the expression of an extra ZbHAA1 copy confirmed ZbHAA1 as a determinant of acetic acid tolerance. ZbHaa1 was found to be required for acetic acid stress-induced transcriptional activation of Z. bailii genes homologous to ScHaa1-target genes. An evolutionary analysis of the Haa1 homologues identified in 28 Saccharomycetaceae species genome sequences, including Z bailii, was carried out using phylogenetic and gene neighbourhood approaches. Consistent with previous studies, this analysis revealed a group containing pre-whole genome duplication species Haa1/Cup2 single orthologues, including ZbHaa1, and two groups containing either Haa1 or Cup2 orthologues from post-whole genome duplication species. S. cerevisiae Cup2 (alias Ace1) is a transcription factor involved in response and tolerance to copper stress. Taken together, these observations led us to hypothesize and demonstrate that ZbHaa1 is also involved in copper-induced transcriptional regulation and copper tolerance.ConclusionsThe transcription factor ZbHaa1 is required for adaptive response and tolerance to both acetic acid and copper stresses. The subfunctionalization of the single ancestral Haa1/Cup2 orthologue that originated Haa1 and Cup2 paralogues after whole genome duplication is proposed.


BMC Genomics | 2015

Search for genes responsible for the remarkably high acetic acid tolerance of a Zygosaccharomyces bailii-derived interspecies hybrid strain

Margarida Palma; Filipa de Canaveira Roque; Joana F. Guerreiro; Nuno P. Mira; Lise Queiroz; Isabel Sá-Correia

BackgroundZygosaccharomyces bailii is considered the most problematic acidic food spoilage yeast species due to its exceptional capacity to tolerate high concentrations of weak acids used as fungistatic preservatives at low pH. However, the mechanisms underlying its intrinsic remarkable tolerance to weak acids remain poorly understood. The identification of genes and mechanisms involved in Z. bailii acetic acid tolerance was on the focus of this study. For this, a genomic library from the highly acetic acid tolerant hybrid strain ISA1307, derived from Z. bailii and a closely related species and isolated from a sparkling wine production plant, was screened for acetic acid tolerance genes. This screen was based on the transformation of an acetic acid susceptible Saccharomyces cerevisiae mutant deleted for the gene encoding the acetic acid resistance determinant transcription factor Haa1.ResultsThe expression of 31 different DNA inserts from ISA1307 strain genome was found to significantly increase the host cell tolerance to acetic acid. The in silico analysis of these inserts was facilitated by the recently available genome sequence of this strain. In total, 65 complete or truncated ORFs were identified as putative determinants of acetic acid tolerance and an S. cerevisiae gene homologous to most of them was found. These include genes involved in cellular transport and transport routes, protein fate, protein synthesis, amino acid metabolism and transcription. The role of strong candidates in Z. bailii and S. cerevisiae acetic acid tolerance was confirmed based on homologous and heterologous expression analyses.ConclusionsISA1307 genes homologous to S. cerevisiae genes GYP8, WSC4, PMT1, KTR7, RKR1, TIF3, ILV3 and MSN4 are proposed as strong candidate determinants of acetic acid tolerance. The ORF ZBAI_02295 that contains a functional domain associated to the uncharacterised integral membrane proteins of unknown function of the DUP family is also suggested as a relevant tolerance determinant. The genes ZbMSN4 and ZbTIF3, encoding a putative stress response transcription factor and a putative translation initiation factor, were confirmed as determinants of acetic acid tolerance in both Z. bailii and S. cerevisiae. This study provides valuable indications on the cellular components, pathways and processes to be targeted in order to control food spoilage by the highly acetic acid tolerant Z. bailii and Z. bailii-derived strains. Additionally, this information is essential to guide the improvement of yeast cells robustness against acetic acid if the objective is their use as cell factories.


Frontiers in Microbiology | 2018

Adaptive Response and Tolerance to Acetic Acid in Saccharomyces cerevisiae and Zygosaccharomyces bailii: A Physiological Genomics Perspective

Margarida Palma; Joana F. Guerreiro; Isabel Sá-Correia

Acetic acid is an important microbial growth inhibitor in the food industry; it is used as a preservative in foods and beverages and is produced during normal yeast metabolism in biotechnological processes. Acetic acid is also a major inhibitory compound present in lignocellulosic hydrolysates affecting the use of this promising carbon source for sustainable bioprocesses. Although the molecular mechanisms underlying Saccharomyces cerevisiae response and adaptation to acetic acid have been studied for years, only recently they have been examined in more detail in Zygosaccharomyces bailii. However, due to its remarkable tolerance to acetic acid and other weak acids this yeast species is a major threat in the spoilage of acidic foods and beverages and considered as an interesting alternative cell factory in Biotechnology. This review paper emphasizes genome-wide strategies that are providing global insights into the molecular targets, signaling pathways and mechanisms behind S. cerevisiae and Z. bailii tolerance to acetic acid, and extends this information to other weak acids whenever relevant. Such comprehensive perspective and the knowledge gathered in these two yeast species allowed the identification of candidate molecular targets, either for the design of effective strategies to overcome yeast spoilage in acidic foods and beverages, or for the rational genome engineering to construct more robust industrial strains. Examples of successful applications are provided.


Microbial Cell | 2016

Mitochondrial proteomics of the acetic acid – induced programmed cell death response in a highly tolerant Zygosaccharomyces bailii – derived hybrid strain

Joana F. Guerreiro; Belém Sampaio-Marques; Renata Soares; Ana V. Coelho; Cecília Leão; Paula Ludovico; Isabel Sá-Correia

Very high concentrations of acetic acid at low pH induce programmed cell death (PCD) in both the experimental model Saccharomyces cerevisiae and in Zygosaccharomyces bailii, the latter being considered the most problematic acidic food spoilage yeast due to its remarkable intrinsic resistance to this food preservative. However, while the mechanisms underlying S. cerevisiae PCD induced by acetic acid have been previously examined, the corresponding molecular players remain largely unknown in Z. bailii. Also, the reason why acetic acid concentrations known to be necrotic for S. cerevisiae induce PCD with an apoptotic phenotype in Z. bailii remains to be elucidated. In this study, a 2-DE-based expression mitochondrial proteomic analysis was explored to obtain new insights into the mechanisms involved in PCD in the Z. bailii derived hybrid strain ISA1307. This allowed the quantitative assessment of expression of protein species derived from each of the parental strains, with special emphasis on the processes taking place in the mitochondria known to play a key role in acetic acid - induced PCD. A marked decrease in the content of proteins involved in mitochondrial metabolism, in particular, in respiratory metabolism (Cor1, Rip1, Lpd1, Lat1 and Pdb1), with a concomitant increase in the abundance of proteins involved in fermentation (Pdc1, Ald4, Dld3) was registered. Other differentially expressed identified proteins also suggest the involvement of the oxidative stress response, protein translation, amino acid and nucleotide metabolism, among other processes, in the PCD response. Overall, the results strengthen the emerging concept of the importance of metabolic regulation of yeast PCD.


Frontiers in Microbiology | 2017

Membrane Phosphoproteomics of Yeast Early Response to Acetic Acid: Role of Hrk1 Kinase and Lipid Biosynthetic Pathways, in Particular Sphingolipids

Joana F. Guerreiro; Nuno P. Mira; Aline X.S. Santos; Howard Riezman; Isabel Sá-Correia

Saccharomyces cerevisiae response and tolerance to acetic acid is critical in industrial biotechnology and in acidic food and beverages preservation. The HRK1 gene, encoding a protein kinase of unknown function belonging to the “Npr1-family” of kinases known to be involved in the regulation of plasma membrane transporters, is an important determinant of acetic acid tolerance. This study was performed to identify the alterations occurring in yeast membrane phosphoproteome profile during the adaptive early response to acetic acid stress (following 1 h of exposure to a sub-lethal inhibitory concentration; 50 mM at pH 4.0) and the effect of HRK1 expression on the phosphoproteome. Results from mass spectrometry analysis following the prefractionation and specific enrichment of phosphorylated peptides using TiO2 beads highlight the contribution of processes related with translation, protein folding and processing, transport, and cellular homeostasis in yeast response to acetic acid stress, with particular relevance for changes in phosphorylation of transport-related proteins, found to be highly dependent on the Hrk1 kinase. Twenty different phosphoproteins known to be involved in lipid and sterol metabolism were found to be differently phosphorylated in response to acetic acid stress, including several phosphopeptides that had not previously been described as being phosphorylated. The suggested occurrence of cellular lipid composition remodeling during the short term yeast response to acetic acid was confirmed: Hrk1 kinase-independent reduction in phytoceramide levels and a reduction in phosphatidylcholine and phosphatidylinositol levels under acetic acid stress in the more susceptible hrk1Δ strain were revealed by a lipidomic analysis.


1st Portuguese Biomedical Engineering Meeting | 2011

Response and resistance to drugs and chemical stress in the yeast model: A genome-wide view

Sandra Costa dos Santos; Miguel C. Teixeira; Nuno P. Mira; Tania Rodrigues Cabrito; Margarida Palma; Artur B. Lourenço; Paulo Jorge Dias; Joana F. Guerreiro; Ana S. Moreira; Sílvia F. Henriques; Isabel Sá-Correia

In this article we provide a brief overview on the activities of the Biological Sciences Research Group (BRSG) (http://groups.ist.utl.pt/bsrg/) of the Institute for Biotechnology and Bioengineering at Instituto Superior Te´cnico, involving OMICS and Molecular Systems Biology approaches applied to the understanding of mechanisms involved in the Yeast Stress Response. Genomics, chemogenomics, transcriptomics, quantitative proteomics and metabolomics are explored to get an integrative view on the response and resistance to drugs and other chemical stresses in the model eukaryote and industrial yeast species Saccharomyces cerevisiae.

Collaboration


Dive into the Joana F. Guerreiro's collaboration.

Top Co-Authors

Avatar

Isabel Sá-Correia

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar

Nuno P. Mira

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar

Margarida Palma

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miguel C. Teixeira

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar

Lise Queiroz

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar

Paulo Jorge Dias

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tânia R. Cabrito

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge