Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joana Feiteiro is active.

Publication


Featured researches published by Joana Feiteiro.


Environment International | 2016

The effects of phthalates in the cardiovascular and reproductive systems: A review.

Melissa Mariana; Joana Feiteiro; Ignacio Verde; Elisa Cairrão

Every year millions of tons of plastic are produced around the world and humans are increasingly exposed to them. This constant exposure to plastics has raised some concerns against human health, particularly when it comes to phthalates. These compounds have endocrine-disrupting properties, as they have the ability to bind molecular targets in the body and interfere with hormonal function and quantity. The main use of phthalates is to give flexibility to polyvinyl chloride (PVC) polymers. Phthalates are found in a variety of industrial and consumer products, and as they are not covalently bound to the plastic, phthalates contaminate the environment from which human exposure occurs. Studies in human and animal populations suggest a correlation between phthalate exposure and adverse health outcomes, particularly at the reproductive and cardiovascular systems, however there is much less information about the phthalate toxicity of the later. Thus, the main purpose of this review is to present the studies relating the effects already stated of phthalates on the cardiovascular and reproductive systems, and also present the link between these two systems.


Cellular Signalling | 2016

Cyclic guanosine monophosphate compartmentation in human vascular smooth muscle cells

Joana Feiteiro; Ignacio Verde; Elisa Cairrão

AIMS The role of different vascular subtypes of phosphodiesterases (PDE) in cGMP compartmentalization was evaluated in human smooth muscle cells. METHODS AND RESULTS To understand how the cGMP conveys different information we infected smooth muscle cells with adenovirus containing mutants of the rat olfactory cyclic nucleotide-gated (CNG) channel-subunit and we recorded the associated cGMP-gated current (ICNG). The whole cell configuration of patch clamp technique was used to measure the ICNG and also the potassium current (IK) in human umbilical artery smooth muscle cells (HUASMC). ANP (0.1μM) induced a clear activation of basal ICNG, whereas SNP (100 μM) had a slight effect. The nonselective PDE inhibitor (IBMX; 100 μM), the PDE5 inhibitor (T0-156; 1 μM) and the PDE3 inhibitor (cilostamide; 10 μM), all had a tiny effects on the basal ICNG current. Concerning potassium channels, we observed that ANP and testosterone induced activation of IK and this activation is bigger than that elicited by SNP, cilostamide and T0-156. Cilostamide and T0-156 decreased the CNG stimulation induced by ANP and testosterone, suggesting that pGC pool is controlled by PDE3 and 5. Thus, the effects of SNP show the existence of two separated pools, one localized next to the plasma membrane and controlled by the PDE5 and PDE3, and a second pool localized in the cytosol of the cells that is regulated mainly by PDE3. CONCLUSIONS Our results show the existence of cGMP compartmentalization in human vascular smooth muscle cells and this phenomenon can open new perspectives concerning the examination of PDE families as therapeutic targets.


Journal of Cardiovascular Pharmacology | 2014

Testosterone and atrial natriuretic peptide share the same pathway to induce vasorelaxation of human umbilical artery.

Joana Feiteiro; António José Santos-Silva; Ignacio Verde; Elisa Cairrão

Abstract: We recently observed in human umbilical artery smooth muscle cells that testosterone activates protein kinase G and stimulates large-conductance Ca2+ activated (BKCa) and voltage sensitive (KV) potassium channels. In the same work, we also show that atrial natriuretic peptide (ANP), an activator of particulate guanylate cyclase (pGC), stimulates the activity of BKCa and KV channels because of protein kinase G activation. The aim of this work was to prove that the relaxant effects of testosterone are also because of the increase of cGMP because of activation of the pGC. Subsarcolemmal cGMP signals were monitored in single cells by recording the cGMP-gated current (ICNG) in human umbilical artery smooth muscle cells expressing the wild-type rat olfactory cyclic nucleotide-gated (CNG) channel. Sodium nitroprusside (10 and 100 &mgr;M), ANP (0.1 and 1 &mgr;M), or testosterone (0.1, 1, and 10 &mgr;M) induced activation of ICNG. This activation induced by testosterone and ANP is bigger than that elicited by sodium nitroprusside. In summary, our study reveals that testosterone and ANP activate the pGC and induce vasorelaxation of human umbilical artery.


Reproductive Sciences | 2016

Mifepristone is a Vasodilator Due to the Inhibition of Smooth Muscle Cells L-Type Ca2+ Channels

Melissa Mariana; Joana Feiteiro; Elisa Cairrão; Ignacio Verde

Derived from the estrane progestins, mifepristone was the first synthetic steroid of this class employed as abortifacient in the first months of pregnancy. Mifepristone reduces high potassium-induced contraction and prevents calcium-induced contraction. At the vascular level, mifepristone induces direct relaxation in rat and human arteries, and this effect seems to be endothelium- and NO independent, suggesting that the vascular smooth muscle is its target. Moreover, mifepristone’s effect could involve the modulation of different calcium channels. The aim of the present study is to analyze the involvement of calcium channels in the relaxation induced by mifepristone on vascular smooth muscle cells (VSMCs). Planar cell surface area (PCSA) technique was used to analyze the effect of mifepristone on the VSMC contractility, and the whole cell configuration of patch-clamp technique to measure the activity of L-type Ca2+ channels (LTCC) in A7r5 cells. Regarding the PCSA technique, mifepristone induced relaxation of the VSMC previously contracted by different agents. Also, a rapid inhibitory effect on basal and BAY K8644-stimulated calcium current was observed, which indicates that this drug has the ability to block LTCC. These results suggest that mifepristone induces relaxation on the VSMCs due to the inhibition of the calcium channels.


Reproductive Sciences | 2017

Genomic and Nongenomic Effects of Mifepristone at the Cardiovascular Level: A Review:

Joana Feiteiro; Melissa Mariana; Ignacio Verde; Elisa Cairrão

Mifepristone (RU 486) is a compound that is structurally related to steroid hormones, which is derived from the estrane progestins. This compound strongly binds the progesterone and glucocorticoid receptor and, to a lesser extent, the androgen receptor. This compound has its effects through different signaling pathways, related to genomic and nongenomic effects. The genomic effect involves the activation or blockage of nuclear or intracellular receptor, that in this case the progesterone, glucocorticoid, and androgen receptors. On the contrary, the nongenomic effect of mifepristone is independent of the activation of these receptors. Regarding the nongenomic, several authors observed that mifepristone induces higher uterine artery blood flow probably due to the decrease in serum nitric oxide level. Moreover, recently it has been demonstrated that mifepristone induces relaxation, and this effect is independent of the endothelium and due to the activation of the calcium channels. The main side effects associated with this pathway are hemorrhage and inhibition of platelet aggregation that can lead to hypovolemia or to hypotension. Concerning the genomic effect, this drug blocks progesterone, androgens, and glucocorticoids receptors and also activates the progesterone receptor and their respective effects. The most frequently reported adverse effects of mifepristone are nausea, vomiting, hypovolemia, hypotension, amenorrhea, and infertility. The main purpose of this review is to describe the genomic and nongenomic effects of mifepristone at vascular level and describe some pathologies in which mifepristone is used as a treatment.


Toxicology in Vitro | 2018

Tributyltin role on the serotonin and histamine receptors in human umbilical artery

Solange Glória; João Marques; Joana Feiteiro; Helena Marcelino; Ignacio Verde; Elisa Cairrão

Some studies in animals suggest that TBT may constitute a risk factor for cardiovascular diseases. Hence, the main purpose of this study was to investigate in human umbilical artery (HUA) the effect of TBT on vascular reactivity, manly in serotonin (5-HT) and histamine receptors. Using standard organ bath techniques, rings of HUA without endothelium were contracted by 5-HT and histamine. We also investigated the effect of TBT on the expression of the receptors using Real-time PCR. The results show that TBT short term effects include concentration-dependent relaxation. Moreover, at long term exposures, the arteries treated with 100 μM of TBT do not have contraction capacity when 5-HT is added, and the gene expression of 5-HT2A receptor decrease. Regarding histamine, it was demonstrated that TBT induces a concentration-dependent relaxation and the H1 gene expression levels decrease. In conclusion TBT modifies the activity and expression of 5-HT and histamine receptors.


Journal of Toxicological Sciences | 2018

Inhibition of L-type calcium channels by Bisphenol A in rat aorta smooth muscle

Joana Feiteiro; Melissa Mariana; Solage Glória; Elisa Cairrão

Bisphenol A (BPA) is an endocrine disrupting chemical used on a wide range in industry. This compound has been used in the production of polycarbonate plastics and epoxy resins. For this reason and their global use, BPA is one of the most common environmental chemicals to which humans are exposed. This exposure can cause several adverse health outcomes, including at the cardiovascular level. The regulation of ion channels in vascular smooth muscle is pivotal and important for vasoreactivity, and changes in their flux can be involved in the pathophysiology of some cardiovascular diseases. This study aims to analyse in rat aorta whether the vasorelaxant effect of BPA is mediated by L-type Ca2+ channels inhibition. Using male Wistar rat aorta artery rings in the organ bath we analysed the contractility, and to study the activity of calcium current in A7r5 cells we used the whole cell configuration of Patch Clamp technique. Regarding the contractility experiences we observed that in both NA and KCl contraction, BPA caused a rapid and concentration-dependent relaxation. The electrophysiology experiments showed that BPA inhibited the basal and BAY K8644-stimulated whole-cell L-type Ca2+ channel (W-CLTCC) currents, indicating that this drug blocks the L-type Ca2+ channels. Our results suggest that BPA inhibits the W-CLTCC, leading to the relaxation of vascular smooth muscle.


Journal of Obstetrics and Gynaecology Research | 2018

How is the human umbilical artery regulated

Margarida Lorigo; Melissa Mariana; Joana Feiteiro; Elisa Cairrão

The purpose of this review is to present an update of the main mechanisms involved in the physiological regulation of contraction and relaxation of the human umbilical artery (HUA) smooth muscle cells. A literature review was performed based on the analysis of papers available on PubMed. The most important and relevant studies regarding the regulation of the HUA are presented in this article. The vascular smooth muscle is a highly specialized structure, whose main function is to regulate the vascular tonus. This is controlled by a balance between the cellular signaling pathways that mediate contraction and relaxation. The cells responsible for the contractile property of this muscle are the smooth muscle cells (SMC), and an excellent source of these cells is the HUA, involved in fetoplacental circulation. Since the umbilical blood vessels are not innervated, the HUA tonus is modulated by vasoactive substances that regulate the contractile process. The main vasoactive substances that induce contraction are serotonin, histamine, thromboxane, bradykinin, endothelin 1 and prostaglandin F2α, that are linked to the activation of proteins Gq and Gi/0. On the other hand, the main vasorelaxation mechanisms are the activation of adenyl and guanil cyclases, potassium channels and the inhibition of calcium channels. The SMC from the HUA allow the study of different cellular mechanisms and their functions. Therefore, these cells are an important tool to study the mechanisms regulating the contractility of this artery, allowing to detect potential therapeutic targets to treat HUA disorders (gestational hypertension and pre‐eclampsia).


International Journal of Environmental Research | 2018

Tributyltin Affects Rat Vascular Contractility Through L-Type Calcium Channels

Joana Feiteiro; Melissa Mariana; Ignacio Verde; Elisa Cairrão

The humans being exposed to tributyltin (TBT), through the ingestion of contaminated diet, particularly seafood, and through the ingestion of indoor dust. TBT is one of the most studied organotins and some reports demonstrated that this compound interferes with the physiology of the cardiovascular system; however, the exact mechanisms involved are still under discussion. Hence, this study aims to evaluate the effects of TBT on the vascular function. The evaluation of TBT effects on the contractility of rat aorta was performed using the organ bath technique using two different contractile agents: noradrenaline (NA) and potassium chloride (KCl). The whole-cell configuration of the patch clamp technique was performed to evaluate the TBT effects on the calcium currents of A7r5 cell line. The results demonstrate that TBT interferes with the vascular system as it elicits relaxation of the rat aorta contracted by NA or by KCl and inhibits L-type calcium currents in smooth muscle cells.


Cardiovascular Toxicology | 2018

Cardiovascular Response of Rat Aorta to Di-(2-ethylhexyl) Phthalate (DEHP) Exposure

Melissa Mariana; Joana Feiteiro; Elisa Cairrão

Phthalates are one of the main constituents of plastic, reaching up to 40% of the total plastic weight, and their main function is to impart flexibility/elasticity to polymers that would otherwise be rigid. Phthalates are known as endocrine disruptors, since they can interfere with hormone homeostasis. Regarding the cardiovascular system, it was already shown the effects of di-(2-ethylhexyl) phthalate (DEHP) exposure with significant changes in several calcium-handling proteins and an increase in the blood pressure of mice offspring, suggesting that DEHP leads to vasocontraction. However, the mechanisms involved were not elucidated yet. The aim of this study is to analyse the involvement of calcium channels in the effects induced by DEHP on vascular smooth muscle cells. Endothelium-denuded aorta artery rings were prepared from male Wistar rats and incubated in an organ bath, and the whole-cell configuration of Patch Clamp technique was used to measure the activity of L-type Ca2+ channels (LTCC) in A7r5 cells. Overall, DEHP caused relaxation on KCl-induced contraction at higher concentrations and inhibited the basal and BAY K8644-stimulated calcium current, indicating that this drug blocks LTCC. These results suggest that DEHP induces relaxation on vascular smooth muscle cells due to the inhibition of calcium channels.

Collaboration


Dive into the Joana Feiteiro's collaboration.

Top Co-Authors

Avatar

Elisa Cairrão

University of Beira Interior

View shared research outputs
Top Co-Authors

Avatar

Ignacio Verde

University of Beira Interior

View shared research outputs
Top Co-Authors

Avatar

Melissa Mariana

University of Beira Interior

View shared research outputs
Top Co-Authors

Avatar

A Esteves

University of Beira Interior

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helena Marcelino

University of Beira Interior

View shared research outputs
Top Co-Authors

Avatar

J Pereira

University of Beira Interior

View shared research outputs
Researchain Logo
Decentralizing Knowledge