Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joana Gil-Mohapel is active.

Publication


Featured researches published by Joana Gil-Mohapel.


Brain Research Reviews | 2010

Hippocampal cell loss and neurogenesis after fetal alcohol exposure: insights from different rodent models.

Joana Gil-Mohapel; Fanny Boehme; Leah Kainer; Brian R. Christie

Prenatal ethanol exposure is invariably detrimental to the developing central nervous system and the hippocampus is particularly sensitive to the teratogenic effects of ethanol. Prenatal ethanol exposure has been shown to result in hippocampal cell loss, altered neuronal morphology and impaired performance on hippocampal-dependent learning and memory tasks in rodents. The dentate gyrus (DG) of the hippocampus is one of the few brain regions where neurogenesis continues into adulthood. This process appears to have functional significance and these newly generated neurons are believed to play important functions in learning and memory. Recently, several groups have shown that adult hippocampal neurogenesis is compromised in animal models of fetal alcohol spectrum disorders (FASD). The direction and magnitude of any changes in neurogenesis, however, appear to depend on a variety of factors that include: the rodent model used; the blood alcohol concentration achieved; the developmental time point when alcohol was administered; and the frequency of ethanol exposure. In this review we will provide an overview of the different rodent models of FASD that are commonly used in this research, emphasizing each of their strengths and limitations. We will also present an up-to-date summary on the effects of prenatal/neonatal ethanol exposure on adult hippocampal neurogenesis and cell loss, highlighting some of the possible molecular mechanisms that might be involved.


Brain Research Reviews | 2011

The role of oxidative stress in fetal alcohol spectrum disorders

Patricia S. Brocardo; Joana Gil-Mohapel; Brian R. Christie

The ingestion of alcohol/ethanol during pregnancy can result in abnormal fetal development in both humans and a variety of experimental animal models. Depending on the pattern of consumption, the dose, and the period of exposure to ethanol, a myriad of structural and functional deficits can be observed. These teratogenic effects are thought to result from the ethanol-induced dysregulation of a variety of intracellular pathways ultimately culminating in toxicity and cell death. For instance, ethanol exposure can lead to the generation of reactive oxygen species (ROS) and produce an imbalance in the intracellular redox state, leading to an overall increase in oxidative stress. In the present review we will provide an up-to-date summary on the effects of prenatal/neonatal ethanol exposure on the levels of oxidative stress in the central nervous system (CNS) of experimental models of fetal alcohol spectrum disorders (FASD). We will also review the evidence for the use of antioxidants as potential therapeutic strategies for the treatment of some of the neuropathological deficits characteristic of both rodent models of FASD and children afflicted with these disorders. We conclude that an imbalance in the intracellular redox state contributes to the deficits seen in FASD and suggest that antioxidants are potential candidates for the development of novel therapeutic strategies for the treatment of these developmental disorders.


Neuropharmacology | 2012

Anxiety- and depression-like behaviors are accompanied by an increase in oxidative stress in a rat model of fetal alcohol spectrum disorders: Protective effects of voluntary physical exercise☆

Patricia S. Brocardo; Fanny Boehme; Anna R. Patten; Adrian Cox; Joana Gil-Mohapel; Brian R. Christie

Prenatal ethanol exposure can damage the developing nervous system, producing long-lasting impairments in both brain structure and function. In this study we analyzed how exposure to this teratogen during the period of brain development affects the intracellular redox state in the brain as well as the development of anxiety- and depressive-like phenotypes. Furthermore, we also tested whether aerobic exercise might have therapeutic potential for fetal alcohol spectrum disorders (FASD) by increasing neuronal antioxidant capacity and/or by alleviating ethanol-induced behavioral deficits. Sprague-Dawley rats were administered ethanol across all three-trimester equivalents (i.e., throughout gestation and during the first 10 days of postnatal life). Ethanol-exposed and control animals were assigned to either sedentary or running groups at postnatal day (PND) 48. Runners had free access to a running wheel for 12 days and at PND 60 anxiety- and depressive-like behaviors were assessed. Perinatal ethanol exposure resulted in the occurrence of depressive and anxiety-like behaviors in adult rats without affecting their locomotor activity. Voluntary wheel running reversed the depressive-like behaviors in ethanol-exposed males, but not in ethanol-exposed females. Levels of lipid peroxidation and protein oxidation were significantly increased in the hippocampus and cerebellum of ethanol-exposed rats, and there was a concomitant reduction in the levels of the endogenous antioxidant glutathione. Voluntary exercise was able to reverse the deficits in glutathione both in ethanol-exposed males and females. Thus, while voluntary physical exercise increased glutathione levels in both sexes, its effects at the behavioral level were sex dependent, with only ethanol-exposed male runners showing a decrease in depressive-like behaviors.


Hippocampus | 2009

Endogenous cannabinoid signaling is required for voluntary exercise-induced enhancement of progenitor cell proliferation in the hippocampus

Matthew N. Hill; Andrea K. Titterness; Anna C. Morrish; Erica J. Carrier; Tiffany T.-Y. Lee; Joana Gil-Mohapel; Boris B. Gorzalka; Cecilia J. Hillard; Brian R. Christie

Voluntary exercise and endogenous cannabinoid activity have independently been shown to regulate hippocampal plasticity. The aim of the current study was to determine whether the endocannabinoid system is regulated by voluntary exercise and if these changes contribute to exercise‐induced enhancement of cell proliferation. In Experiment 1, 8 days of free access to a running wheel increased the agonist binding site density of the cannabinoid CB1 receptor; CB1 receptor‐mediated GTPγS binding; and the tissue content of the endocannabinoid anandamide in the hippocampus but not in the prefrontal cortex. In Experiment 2, the CB1 receptor antagonist AM251 (1 mg kg−1) was administered daily to animals given free access to a running wheel for 8 days, after which cell proliferation in the hippocampus was examined through immunohistochemical analysis of the cell cycle protein Ki‐67. Voluntary exercise increased proliferation of progenitor cells, as evidenced by the increase in the number of Ki‐67 positive cells in the granule cell layer of the dentate gyrus (DG) in the hippocampus. However, this effect was abrogated by concurrent treatment with AM251, indicating that the increase in endocannabinoid signaling in the hippocampus is required for the exercise‐induced increase in cell proliferation. These data demonstrate that the endocannabinoid system in the hippocampus is sensitive to environmental change and suggest that it is a mediator of experience‐induced plasticity.


Neurobiology of Disease | 2011

Altered adult hippocampal neurogenesis in the YAC128 transgenic mouse model of Huntington disease.

Jessica M. Simpson; Joana Gil-Mohapel; Mahmoud A. Pouladi; Mohamed Ghilan; Yuanyun Xie; Michael R. Hayden; Brian R. Christie

Perturbations in neurogenesis in the adult brain have been implicated in impaired learning and memory. In the present study, we investigated which stages of the neurogenic process are affected in the transgenic YAC128 mouse model of Huntington disease (HD). Hippocampal neuronal proliferation was altered in the dentate gyrus (DG) of YAC128 mice as compared with wild-type (WT) littermate controls in early symptomatic to end-stage mice. In addition, we detected a significantly lower number of immature neurons in the DG of young, pre-symptomatic YAC128 mice. This decrease in neuronal differentiation persisted through the progression of the disease, and resulted in an overall reduction in the number of new mature neurons in the DG of YAC128 mice. There were no changes in cell proliferation and differentiation in the subventricular zone (SVZ). In this study, we demonstrate decreases in neurogenesis in the DG of YAC128 mice, and these deficits may contribute to the cognitive abnormalities observed in these animals.


Neurobiology of Aging | 2011

Running reduces stress and enhances cell genesis in aged mice

Timal S. Kannangara; Melanie J. Lucero; Joana Gil-Mohapel; Robert J. Drapala; Jessica M. Simpson; Brian R. Christie; Henriette van Praag

Cell proliferation and neurogenesis are diminished in the aging mouse dentate gyrus. However, it is not known whether isolated or social living affects cell genesis and stress levels in old animals. To address this question, aged (17-18 months old) female C57Bl/6 mice were single or group housed, under sedentary or running conditions. We demonstrate that both individual and socially housed aged C57Bl/6 mice have comparable basal cell proliferation levels and demonstrate increased running-induced cell genesis. To assess stress levels in young and aged mice, corticosterone (CORT) was measured at the onset of the active/dark cycle and 4h later. In young mice, no differences in CORT levels were observed as a result of physical activity or housing conditions. However, a significant increase in stress in socially housed, aged sedentary animals was observed at the onset of the dark cycle; CORT returned to basal levels 4h later. Together, these results indicate that voluntary exercise reduces stress in group housed aged animals and enhances hippocampal cell proliferation.


Neurobiology of Disease | 2009

Fmr1 knockout mice show reduced anxiety and alterations in neurogenesis that are specific to the ventral dentate gyrus

B.D. Eadie; W.N. Zhang; Fanny Boehme; Joana Gil-Mohapel; Leah Kainer; Jessica M. Simpson; Brian R. Christie

Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by the selective loss of the expression of the Fmr1 gene. Key symptoms in FXS include intellectual impairment and abnormal anxiety-related behaviors. Fmr1 knockout (KO) mice exhibited reduced anxiety on two behavioral tests as well as a blunted corticosterone response to acute stress. Spatial learning and memory was not impaired when tested with both the classic Morris water and Plus-shaped mazes. Adult hippocampal neurogenesis has been associated with spatial learning and memory and emotions such as anxiety and depression. The process of neurogenesis appears abnormal in young adult Fmr1 KO mice, with significantly fewer bromodeoxyuridine-positive cells surviving for at least 4 weeks in the ventral subregion of the dentate gyrus (DG), a hippocampal subregion more closely associated with emotion than the dorsal DG. Within this smaller pool of surviving cells, we observed a concomitant increase in the proportion of surviving cells that acquire a neuronal phenotype. We did not observe a clear difference in cell proliferation using both endogenous and exogenous markers. This work indicates that loss of Fmr1 expression can alter anxiety-related behaviors in mice as well as produce region-specific alterations in hippocampal adult neurogenesis.


PLOS ONE | 2013

Hippocampal Neurogenesis Levels Predict WATERMAZE Search Strategies in the Aging Brain

Joana Gil-Mohapel; Patricia S. Brocardo; Will Choquette; Russ Gothard; Jessica M. Simpson; Brian R. Christie

The hippocampus plays a crucial role in the formation of spatial memories, and it is thought that adult hippocampal neurogenesis may participate in this form of learning. To better elucidate the relationship between neurogenesis and spatial learning, we examined both across the entire life span of mice. We found that cell proliferation, neuronal differentiation, and neurogenesis significantly decrease with age, and that there is an abrupt reduction in these processes early on, between 1.5-3 months of age. After this, the neurogenic capacity continues to decline steadily. The initial abrupt decline in adult neurogenesis was paralleled by a significant reduction in Morris Water Maze performance, however overall learning and memory remained constant thereafter. Further analysis of the search strategies employed revealed that reductions in neurogenesis in the aging brain were strongly correlated with the adoption of spatially imprecise search strategies. Overall, performance measures of learning and memory in the Morris Water Maze were maintained at relatively constant levels in aging animals due to an increase in the use of spatially imprecise search strategies.


European Journal of Neuroscience | 2011

Voluntary exercise induces adult hippocampal neurogenesis and BDNF expression in a rodent model of fetal alcohol spectrum disorders

Fanny Boehme; Joana Gil-Mohapel; Adrian Cox; Anna R. Patten; Erica Giles; Patricia S. Brocardo; Brian R. Christie

Alcohol consumption during pregnancy can result in a myriad of health problems in the affected offspring ranging from growth deficiencies to central nervous system impairments that result in cognitive deficits. Adult hippocampal neurogenesis is thought to play a role in cognition (i.e. learning and memory) and can be modulated by extrinsic factors such as alcohol consumption and physical exercise. We examined the impact of voluntary physical exercise on adult hippocampal neurogenesis in a rat model of fetal alcohol spectrum disorders (FASD). Intragastric intubation was used to deliver ethanol to rats in a highly controlled fashion through all three trimester equivalents (i.e. throughout gestation and during the first 10 days of postnatal life). Ethanol‐exposed animals and their pair‐fed and ad libitum controls were left undisturbed until they reached a young adult stage at which point they had free access to a running wheel for 12 days. Prenatal and early postnatal ethanol exposure altered cell proliferation in young adult female rats and increased early neuronal maturation without affecting cell survival in the dentate gyrus (DG) of the hippocampus. Voluntary wheel running increased cell proliferation, neuronal maturation and cell survival as well as levels of brain‐derived neurotrophic factor in the DG of both ethanol‐exposed female rats and their pair‐fed and ad libitum controls. These results indicate that the capacity of the brain to respond to exercise is not impaired in this model of FASD, highlighting the potential therapeutic value of physical exercise for this developmental disorder.


Brain Research | 2011

Altered adult hippocampal neuronal maturation in a rat model of fetal alcohol syndrome

Joana Gil-Mohapel; Fanny Boehme; Anna R. Patten; Adrian Cox; Leah Kainer; Erica Giles; Patricia S. Brocardo; Brian R. Christie

Exposure to ethanol during pregnancy can be devastating to the developing nervous system, leading to significant central nervous system dysfunction. The hippocampus, one of the two brain regions where neurogenesis persists into adulthood, is particularly sensitive to the teratogenic effects of ethanol. In the present study, we tested a rat model of fetal alcohol syndrome (FAS) with ethanol administered via gavage throughout all three trimester equivalents. Subsequently, we assessed cell proliferation, as well as neuronal survival, and differentiation in the dentate gyrus of the hippocampus of adolescent (35 days old), young adult (60 days old) and adult (90 days old) Sprague-Dawley rats. Using both extrinsic (bromodeoxyuridine) and intrinsic (Ki-67) markers, we observed no significant alterations in cell proliferation and survival in ethanol-exposed animals when compared with their pair-fed and ad libitum controls. However, we detected a significant increase in the number of new immature neurons in animals that were exposed to ethanol throughout all three trimester equivalents. This result might reflect a compensatory mechanism to counteract the deleterious effects of prenatal ethanol exposure or an ethanol-induced arrest of the neurogenic process at the early neuronal maturation stages. Taken together these results indicate that exposure to ethanol during the period of brain development causes a long-lasting dysregulation of the neurogenic process, a mechanism that might contribute, at least in part, to the hippocampal deficits that have been reported in rodent models of FAS.

Collaboration


Dive into the Joana Gil-Mohapel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timal S. Kannangara

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge