Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joana M. Silva is active.

Publication


Featured researches published by Joana M. Silva.


Journal of Controlled Release | 2012

PLGA-based nanoparticles: an overview of biomedical applications

Fabienne Danhier; Eduardo Ansorena; Joana M. Silva; Régis Coco; Aude Le Breton; Véronique Préat

Poly(lactic-co-glycolic acid) (PLGA) is one of the most successfully developed biodegradable polymers. Among the different polymers developed to formulate polymeric nanoparticles, PLGA has attracted considerable attention due to its attractive properties: (i) biodegradability and biocompatibility, (ii) FDA and European Medicine Agency approval in drug delivery systems for parenteral administration, (iii) well described formulations and methods of production adapted to various types of drugs e.g. hydrophilic or hydrophobic small molecules or macromolecules, (iv) protection of drug from degradation, (v) possibility of sustained release, (vi) possibility to modify surface properties to provide stealthness and/or better interaction with biological materials and (vii) possibility to target nanoparticles to specific organs or cells. This review presents why PLGA has been chosen to design nanoparticles as drug delivery systems in various biomedical applications such as vaccination, cancer, inflammation and other diseases. This review focuses on the understanding of specific characteristics exploited by PLGA-based nanoparticles to target a specific organ or tissue or specific cells.


Journal of Controlled Release | 2013

Immune system targeting by biodegradable nanoparticles for cancer vaccines

Joana M. Silva; Mafalda Videira; Rogério Gaspar; Véronique Préat; Helena F. Florindo

The concept of therapeutic cancer vaccines is based on the activation of the immune system against tumor cells after the presentation of tumor antigens. Nanoparticles (NPs) have shown great potential as delivery systems for cancer vaccines as they potentiate the co-delivery of tumor-associated antigens and adjuvants to dendritic cells (DCs), insuring effective activation of the immune system against tumor cells. In this review, the immunological mechanisms behind cancer vaccines, including the role of DCs in the stimulation of T lymphocytes and the use of Toll-like receptor (TLR) ligands as adjuvants will be discussed. An overview of each of the three essential components of a therapeutic cancer vaccine - antigen, adjuvant and delivery system - will be provided with special emphasis on the potential of particulate delivery systems for cancer vaccines, in particular those made of biodegradable aliphatic polyesters, such as poly(lactic-co-glycolic acid) (PLGA) and poly-ε-caprolactone (PCL). Some of the factors that can influence NP uptake by DCs, including size, surface charge, surface functionalization and route of administration, will also be considered.


Frontiers in chemistry | 2014

Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking

João Conniot; Joana M. Silva; Joana G. Fernandes; Liana C. Silva; Rogério Gaspar; Steve Brocchini; Helena F. Florindo; Teresa S. Barata

Cancer is one of the most common diseases afflicting people globally. New therapeutic approaches are needed due to the complexity of cancer as a disease. Many current treatments are very toxic and have modest efficacy at best. Increased understanding of tumor biology and immunology has allowed the development of specific immunotherapies with minimal toxicity. It is important to highlight the performance of monoclonal antibodies, immune adjuvants, vaccines and cell-based treatments. Although these approaches have shown varying degrees of clinical efficacy, they illustrate the potential to develop new strategies. Targeted immunotherapy is being explored to overcome the heterogeneity of malignant cells and the immune suppression induced by both the tumor and its microenvironment. Nanodelivery strategies seek to minimize systemic exposure to target therapy to malignant tissue and cells. Intracellular penetration has been examined through the use of functionalized particulates. These nano-particulate associated medicines are being developed for use in imaging, diagnostics and cancer targeting. Although nano-particulates are inherently complex medicines, the ability to confer, at least in principle, different types of functionality allows for the plausible consideration these nanodelivery strategies can be exploited for use as combination medicines. The development of targeted nanodelivery systems in which therapeutic and imaging agents are merged into a single platform is an attractive strategy. Currently, several nanoplatform-based formulations, such as polymeric nanoparticles, micelles, liposomes and dendrimers are in preclinical and clinical stages of development. Herein, nanodelivery strategies presently investigated for cancer immunotherapy, cancer targeting mechanisms and nanocarrier functionalization methods will be described. We also intend to discuss the emerging nano-based approaches suitable to be used as imaging techniques and as cancer treatment options.


Journal of Controlled Release | 2015

In vivo delivery of peptides and Toll-like receptor ligands by mannose-functionalized polymeric nanoparticles induces prophylactic and therapeutic anti-tumor immune responses in a melanoma model.

Joana M. Silva; Eva Zupančič; Gaëlle Vandermeulen; Vanessa G. Oliveira; Ana Salgado; Mafalda Videira; Manuela Gaspar; Luis Graca; Véronique Préat; Helena F. Florindo

We hypothesized that the co-entrapment of melanoma-associated antigens and the Toll-like receptor (TLR) ligands Poly(I:C) and CpG, known to be Th1-immunopotentiators, in mannose-functionalized aliphatic polyester-based nanoparticles (NPs) could be targeted to mannose receptors on antigen-presenting cells and induce anti-tumor immune responses. High entrapment efficiencies of antigens and immunopotentiators in 150nm NPs were obtained. The co-entrapment of the model antigen ovalbumin and the TLR ligands was crucial to induce high IgG2c/IgG1 ratios and high levels of IFN-γ and IL-2. Mannose-functionalization of NPs potentiated the Th1 immune response. The nanoparticulate vaccines decreased the growth rate of murine B16F10 melanoma tumors in therapeutic and prophylatic settings. The combination of mannose-functionalized NPs containing MHC class I- or class II-restricted melanoma antigens and the TLR ligands induced the highest tumor growth delay. Overall, we demonstrate that the multifunctional properties of NPs in terms of targeting and antigen/adjuvant delivery have high cancer immunotherapeutic potential.


Nanomedicine: Nanotechnology, Biology and Medicine | 2014

Development of functionalized nanoparticles for vaccine delivery to dendritic cells: a mechanistic approach

Joana M. Silva; Gaëlle Vandermeulen; Vanessa G. Oliveira; Sandra N. Pinto; Catarina Rodrigues; Ana Salgado; Carlos Am Afonso; Ana S. Viana; Christine Jérôme; Liana C. Silva; Luiis Graca; Véronique Préat; Helena F. Florindo

AIM Produce biodegradable nanoparticles to target antigen-presenting cells (APCs) and evaluate their potential to be used as a vaccine delivery system. MATERIALS & METHODS Untargeted PEGylated poly(d,l-lactic-co-glycolide)-based nanoparticles and mannose-grafted nanoparticles were formulated and physicochemically characterized. Immortalized and primary APCs were used to study nanoparticle internalization patterns. The endocytic pathways and intracellular trafficking followed by nanoparticles were also investigated. RESULTS & DISCUSSION Nanoparticles displayed mannose residues available for binding at the nanoparticle surface. Different nanoparticle internalization patterns by immortalized and primary APCs were verified. Macropinocytosis, clathrin-mediated endocytosis, caveolin- and lipid raft-dependent endocytosis are involved in nanoparticles internalization. Nanoparticles demonstrate both endolysosomal and cytosolic localizations and a tendency to accumulate nearby the endoplasmic reticulum. CONCLUSION The developed nanoparticles might drive antigens to be presented through MHC class I and II molecules to both CD8(+) and CD4(+) T cells, favoring a complete and coordinated immune response.


Acta Biomaterialia | 2017

Poly(lactic acid)-based particulate systems are promising tools for immune modulation.

Carina Peres; Ana I. Matos; João Conniot; Vanessa Sainz; Eva Zupančič; Joana M. Silva; Luis Graca; Rogério Gaspar; Véronique Préat; Helena F. Florindo

Poly(lactic acid) (PLA) is one of the most successful and versatile polymers explored for controlled delivery of bioactive molecules. Its attractive properties of biodegradability and biocompatibility in vivo have contributed in a meaningful way to the approval of different products by the FDA and EMA for a wide range of biomedical and pharmaceutical applications, in the past two decades. This polymer has been widely used for the preparation of particles as delivery systems of several therapeutic molecules, including vaccines. These PLA vaccine carriers have shown to induce a sustained and targeted release of different bacterial, viral and tumor-associated antigens and adjuvants in vivo, triggering distinct immune responses. The present review intends to highlight and discuss the major advantages of PLA as a promising polymer for the development of potent vaccine delivery systems against pathogens and cancer. It aims to provide a critical discussion based on preclinical data to better understand the major effect of PLA-based carrier properties on their interaction with immune cells and thus their role in the modulation of host immunity. STATEMENT OF SIGNIFICANCE During the last decades, vaccination has had a great impact on global health with the control of many severe diseases. Polymeric nanosystems have emerged as promising strategies to stabilize vaccine antigens, promoting their controlled release to phagocytic cells, thus avoiding the need for multiple administrations. One of the most promising polymers are the aliphatic polyesters, which include the poly(lactic acid). This is a highly versatile biodegradable and biocompatible polymer. Products containing this polymer have already been approved for all food and some biomedical applications. Despite all favorable characteristics presented above, PLA has been less intensively discussed than other polymers, such as its copolymer PLGA, including regarding its application in vaccination and particularly in tumor immunotherapy. The present review discusses the major advantages of poly(lactic acid) for the development of potent vaccine delivery systems, providing a critical view on the main properties that determine their effect on the modulation of immune cells.


Cellular Oncology | 2018

Genetics of personalized medicine: cancer and rare diseases

Inês Teles Siefers Alves; Manuel Condinho; Sónia Custódio; Bruna F. Pereira; Rafael Fernandes; Vânia Gonçalves; Paulo J. Costa; Rafaela Lacerda; Ana Rita Marques; Patrícia Martins-Dias; Gonçalo Nogueira; Ana Neves; Patrícia Pinho; Raquel Rodrigues; Eva Rolo; Joana M. Silva; André Travessa; Rosário Pinto Leite; Ana Paula Geraldo de Sousa; Luísa Romão

The 21st annual meeting of the Portuguese Society of Human Genetics (SPGH), organized by Luísa Romão, Ana Sousa and Rosário Pinto Leite, was held in Caparica, Portugal, from the 16th to the 18th of November 2017. Having entered an era in which personalized medicine is emerging as a paradigm for disease diagnosis, treatment and prevention, the program of this meeting intended to include lectures by leading national and international scientists presenting exceptional findings on the genetics of personalized medicine. Various topics were discussed, including cancer genetics, transcriptome dynamics and novel therapeutics for cancers and rare disorders that are designed to specifically target molecular alterations in individual patients. Several panel discussions were held to emphasize (ethical) issues associated with personalized medicine, including genetic cancer counseling.


Archive | 2013

Immunomodulation against microbial pathogens through dendritic cells

Joana M. Silva; Eva Zupančič; Carina Peres; Liana C. Silva; Rogério Gaspar; Véronique Préat; Helena F. Florindo


Journal of Rare Diseases Research Treatment | 2017

Gene expression regulation by upstream open reading frames in rare diseases

Joana M. Silva; Rafael Fernandes; Luísa Romão


BioSys PhD, Faculdade de Ciências da Universidade de Lisboa, 27 novembro 2015 | 2016

Analysis of the translatome by ribosome profiling in colorectal cancer

Joana M. Silva; Hugo Santos; Luísa Romão

Collaboration


Dive into the Joana M. Silva's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Véronique Préat

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luis Graca

Instituto de Medicina Molecular

View shared research outputs
Researchain Logo
Decentralizing Knowledge