Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joana Martínez-Ricós is active.

Publication


Featured researches published by Joana Martínez-Ricós.


Neuroscience Letters | 2012

Glutamatergic projection from the nucleus incertus to the septohippocampal system.

Ana Cervera-Ferri; Yasamin Rahmani; Sergio Martínez-Bellver; Vicent Teruel-Martí; Joana Martínez-Ricós

Recent findings support a relevant role of the nucleus incertus in the control of the hippocampal activity through the modulation of theta rhythm. Previous studies from our group have shown that this nucleus is a critical relay between reticularis pontis oralis and the medial septum/diagonal band, regarded as the main activator and the pacemaker of the hippocampal oscillations, respectively. Besides, the nucleus incertus is highly linked to activated states related to the arousal response. The neurotransmission of the nucleus incertus, however, remains uncertain. Only GABA and the neuromodulator relaxin 3 are usually considered to be involved in its contribution to the septohippocampal system. In this work, we have analyzed the existence of an excitatory projection from the nucleus incertus to the medial septum. We have found a group of glutamatergic neurons in the nucleus incertus projecting to the medial septum. Moreover, we were able to describe a segregated distribution of calbindin and calretinin neurons. While calretinin expression was restricted to the nucleus incertus pars compacta, calbindin positive neurons where observed both in the pars dissipata and the pars compacta of the nucleus. The present work provides innovative data supporting an excitatory component in the pontoseptal pathway.


Brain Structure & Function | 2014

Extending the socio-sexual brain: arginine-vasopressin immunoreactive circuits in the telencephalon of mice

Marcos Otero-García; Ana Martín-Sánchez; Lluís Fortes-Marco; Joana Martínez-Ricós; Carmen Agustin-Pavón; Enrique Lanuza; Fernando Martínez-García

Quantitative analysis of the immunoreactivity for arginine-vasopressin (AVP-ir) in the telencephalon of male (intact and castrated) and female CD1 mice allows us to precisely locate two sexually dimorphic (more abundant in intact than castrated males and females) AVP-ir cell groups in the posterior bed nucleus of the stria terminalis (BST) and the amygdala. Chemoarchitecture (NADPH diaphorase) reveals that the intraamygdaloid AVP-ir cells are located in the intra-amygdaloid BST (BSTIA) rather than the medial amygdala (Me), as previously thought. Then, we have used for the first time tract tracing (combined with AVP immunofluorescence) and fiber-sparing lesions of the BST to analyze the projections of the telencephalic AVP-ir cell groups. The results demonstrate that the posterior BST originates the sexually dimorphic innervation of the lateral septum, the posterodorsal Me and a substance P-negative area in the medioventral striato-pallidum (mvStP).The BSTIA may also contribute to some of these terminal fields. Our material also reveals non-dimorphic AVP-ir processes in two locations of the amygdala. First, the ventral Me shows dendrite-like AVP-ir processes apparently belonging supraoptic neurons, whose possible functions are discussed. Second, the Ce shows sparse, thick AVP-ir axons with high individual variability in density and distribution, whose possible influence on stress coping in relation to the affiliative or agonistic behaviors mediated by the Me are discussed. Finally, we propose that the region of the mvStP showing sexually dimorphic AVP-ir innervation is part of the brain network for socio-sexual behavior, in which it would mediate motivational aspects of chemosensory-guided social interactions.


Behavioral Neuroscience | 2008

Sex versus sweet: opposite effects of opioid drugs on the reward of sucrose and sexual pheromones.

Carmen Agustín-Pavón; Joana Martínez-Ricós; Fernando Martínez-García; Enrique Lanuza

Endogenous opioids mediate some reward processes involving both natural (food, sweet taste) and artificial (morphine, heroin) rewards. In contrast, sexual behavior (which is also reinforcing) is generally inhibited by opioids. To establish the role of endogenous opioids for a newly described natural reinforcer, namely male sexual pheromones for female mice, we checked the effects of systemic injections of the general opioid antagonist naloxone (1-10 mg/kg) and the agonist fentanyl (0.1- 0.5 mg/kg) in a number of behavioral tests. Naloxone affected neither the innate preference for male-soiled bedding (vs. female-soiled bedding) in 2-choice tests nor the induction of place conditioning using male pheromones as rewarding stimuli, although it effectively blocked the preference for consuming a sucrose solution. In contrast, fentanyl inhibited the preference for male chemosignals without altering sucrose preference. These results suggest that, in macrosmatic animals such as rodents, opioidergic inhibition of sexual behavior might be due, at least partially, to an impaired processing of pheromonal cues and that the hedonic value of sweet-tasting solutions and sexual pheromones are under different opioid modulation.


European Journal of Neuroscience | 2015

Regular theta-firing neurons in the nucleus incertus during sustained hippocampal activation

Sergio Martínez-Bellver; Ana Cervera-Ferri; Joana Martínez-Ricós; Amparo Ruiz-Torner; Aina Luque-García; Arantxa Blasco-Serra; Juan Guerrero-Martínez; Vicent Teruel-Martí

This paper describes the existence of theta‐coupled neuronal activity in the nucleus incertus (NI). Theta rhythm is relevant for cognitive processes such as spatial navigation and memory processing, and can be recorded in a number of structures related to the hippocampal activation including the NI. Strong evidence supports the role of this tegmental nucleus in neural circuits integrating behavioural activation with the hippocampal theta rhythm. Theta oscillations have been recorded in the local field potential of the NI, highly coupled to the hippocampal waves, although no rhythmical activity has been reported in neurons of this nucleus. The present work analyses the neuronal activity in the NI in conditions leading to sustained hippocampal theta in the urethane‐anaesthetised rat, in order to test whether such activation elicits a differential firing pattern. Wavelet analysis has been used to better define the neuronal activity already described in the nucleus, i.e., non‐rhythmical neurons firing at theta frequency (type I neurons) and fast‐firing rhythmical neurons (type II). However, the most remarkable finding was that sustained stimulation activated regular‐theta neurons (type III), which were almost silent in baseline conditions and have not previously been reported. Thus, we describe the electrophysiological properties of type III neurons, focusing on their coupling to the hippocampal theta. Their spike rate, regularity and phase locking to the oscillations increased at the beginning of the stimulation, suggesting a role in the activation or reset of the oscillation. Further research is needed to address the specific contribution of these neurons to the entire circuit.


The Journal of Physiology | 2017

Causal relationships between neurons of the nucleus incertus and the hippocampal theta activity in the rat

Sergio Martínez-Bellver; Ana Cervera-Ferri; Aina Luque-García; Joana Martínez-Ricós; Alfonso A. Valverde-Navarro; M. Bataller; Juan Guerrero; Vicent Teruel-Martí

The nucleus incertus is a key node of the brainstem circuitry involved in hippocampal theta rhythmicity. Synchronisation exists between the nucleus incertus and hippocampal activities during theta periods. By the Granger causality analysis, we demonstrated a directional information flow between theta rhythmical neurons in the nucleus incertus and the hippocampus in theta‐on states. The electrical stimulation of the nucleus incertus is also able to evoke a phase reset of the hippocampal theta wave. Our data suggest that the nucleus incertus is a key node of theta generation and the modulation network.


PLOS ONE | 2013

Mating Increases Neuronal Tyrosine Hydroxylase Expression and Selectively Gates Transmission of Male Chemosensory Information in Female Mice

Gillian A. Matthews; Ronak Patel; Alison Walsh; Owain Davies; Joana Martínez-Ricós; Peter A. Brennan

Exposure to chemosensory signals from unfamiliar males can terminate pregnancy in recently mated female mice. The number of tyrosine hydroxylase-positive neurons in the main olfactory bulb has been found to increase following mating and has been implicated in preventing male-induced pregnancy block during the post-implantation period. In contrast, pre-implantation pregnancy block is mediated by the vomeronasal system, and is thought to be prevented by selective inhibition of the mate’s pregnancy blocking chemosignals, at the level of the accessory olfactory bulb. The objectives of this study were firstly to identify the level of the vomeronasal pathway at which selective inhibition of the mate’s pregnancy blocking chemosignals occurs. Secondly, to determine whether a post-mating increase in tyrosine hydroxylase-positive neurons is observed in the vomeronasal system, which could play a role in preventing pre-implantation pregnancy block. Immunohistochemical staining revealed that mating induced an increase in tyrosine-hydroxylase positive neurons in the arcuate hypothalamus of BALB/c females, and suppressed c-Fos expression in these neurons in response to mating male chemosignals. This selective suppression of c-Fos response to mating male chemosignals was not apparent at earlier levels of the pregnancy-blocking neural pathway in the accessory olfactory bulb or corticomedial amygdala. Immunohistochemical staining revealed an increase in the number of tyrosine hydroxylase-positive neurons in the accessory olfactory bulb of BALB/c female mice following mating. However, increased dopamine-mediated inhibition in the accessory olfactory bulb is unlikely to account for the prevention of pregnancy block to the mating male, as tyrosine hydroxylase expression did not increase in females of the C57BL/6 strain, which show normal mate recognition. These findings reveal an association of mating with increased dopaminergic modulation in the pregnancy block pathway and support the hypothesis that mate recognition prevents pregnancy block by suppressing the activation of arcuate dopamine release.


Archive | 2008

Have Sexual Pheromones Their Own Reward System in the Brain of Female Mice

Fernando Martínez-García; Carmen Agustín-Pavón; José Martínez-Hernández; Joana Martínez-Ricós; José Moncho-Bogani; Amparo Novejarque; Enrique Lanuza

Even in rodents, there is no clear evidence of the existence of sexual pheromones mediating instinctive intersexual attraction. In this review we discuss previous results of our group indicating that female mice reared in the absence of male-derived chemosignals are ‘attracted’ by some components of male-soiled bedding, presumably detected by the vomeronasal organ. In contrast, male odors (olfactory stimuli) only acquire attractiveness by means of their association with the innately ‘attractive’ vomeronasal-detected pheromones. These ‘attractive’ male pheromones are rewarding to adult females, since they induce conditioned preference for a place where they are repeatedly presented to the females. Pheromone reward seems independent of the dopaminergic neurotransmission in the tegmento-striatal pathway, and uses mechanisms and circuits apparently different to those of other natural reinforcers.


Physiological Reports | 2016

Characterization of oscillatory changes in hippocampus and amygdala after deep brain stimulation of the infralimbic prefrontal cortex

Ana Cervera-Ferri; Vicent Teruel-Martí; Moises Barceló‐Molina; Joana Martínez-Ricós; Aina Luque-García; Sergio Martínez-Bellver; Albert Adell

Deep brain stimulation (DBS) is a new investigational therapy that has generated positive results in refractory depression. Although the neurochemical and behavioral effects of DBS have been examined, less attention has been paid to the influence of DBS on the network dynamics between different brain areas, which could contribute to its therapeutic effects. Herein, we set out to identify the effects of 1 h DBS in the infralimbic cortex (IL) on the oscillatory network dynamics between hippocampus and basolateral amygdala (BLA), two regions implicated in depression and its treatment. Urethane‐anesthetized rats with bilaterally implanted electrodes in the IL were exposed to 1 h constant stimulation of 130 Hz of frequency, 60 μA of constant current intensity and biphasic pulse width of 80 μsec. After a period of baseline recording, local field potentials (LFP) were recorded with formvar‐insulated stainless steel electrodes. DBS of the IL increased the power of slow wave (SW, <1.5 Hz) and theta (3–12 Hz) frequencies in the hippocampus and BLA. Furthermore, IL DBS caused a precise coupling in different frequency bands between both brain structures. The increases in SW band synchronization in hippocampus and BLA after DBS suggest that these changes may be important for the improvement of depressive behavior. In addition, the augmentation in theta synchrony might contribute to improvement in emotional and cognitive processes.


Physiology & Behavior | 2009

Role of nitric oxide in pheromone-mediated intraspecific communication in mice

Carmen Agustín-Pavón; Joana Martínez-Ricós; Fernando Martínez-García; Enrique Lanuza

Nitric oxide is known to take part in the control of sexual and agonistic behaviours. This is usually attributed to its role in neural transmission in the hypothalamus and other structures of the limbic system. However, socio-sexual behaviours in rodents are mainly directed by chemical signals detected by the vomeronasal system, and nitric oxide is abundant in key structures along the vomeronasal pathway. Thus, here we check whether pharmacological treatments interfering with nitrergic transmission could affect socio-sexual behaviour by impairing the processing of chemical signals. Treatment with an inhibitor of nitric oxide synthesis (Nomega-Nitro-l-arginine methyl ester hydrochloride, L-NAME, 100mg/kg) blocks the innate preference displayed by female mice for sexual pheromones contained in male-soiled bedding, with a lower dose of the drug (50mg/kg) having no effect. Animals treated with the high dose of L-NAME show no reduction of olfactory discrimination of male urine in a habituation-dishabituation test, thus suggesting that the effect of the drug on the preference for male pheromones is not due to an inability to detect male urine. Alternatively, it may result from an alteration in processing the reinforcing value of pheromones as sexual signals. These results add a new piece of evidence to our understanding of the neurochemistry of intraspecific chemical communication in rodents, and suggest that the role of nitric oxide in socio-sexual behaviours should be re-evaluated taking into account the involvement of this neuromodulator in the processing of chemical signals.


The Journal of Comparative Neurology | 2018

Neural oscillations in the infralimbic cortex after electrical stimulation of the amygdala. Relevance to acute stress processing

Aina Luque-García; Vicent Teruel-Martí; Sergio Martínez-Bellver; Albert Adell; Ana Cervera-Ferri; Joana Martínez-Ricós

The stress system coordinates the adaptive reactions of the organism to stressors. Therefore, dysfunctions in this circuit may correlate to anxiety‐related disorders, including depression. Comprehending the dynamics of this network may lead to a better understanding of the mechanisms that underlie these diseases. The central nucleus of the amygdala (CeA) activates the hypothalamic–pituitary–adrenal axis and brainstem nodes by triggering endocrine, autonomic and behavioral stress responses. The medial prefrontal cortex plays a significant role in regulating reactions to stressors, and is specifically important for limiting fear responses. Brain oscillations reflect neural systems activity. Synchronous neuronal assemblies facilitate communication and synaptic plasticity, mechanisms that cooperatively support the temporal representation and long‐term consolidation of information. The purpose of this article was to delve into the interactions between these structures in stress contexts by evaluating changes in oscillatory activity. We particularly analyzed the local field potential in the infralimbic region of the medial prefrontal cortex (IL) in urethane‐anesthetized rats after the electrical activation of the central nucleus of the amygdala by mimicking firing rates induced by acute stress. Electrical CeA activation induced a delayed, but significant, change in the IL, with prominent slow waves accompanied by an increase in the theta and gamma activities, and spindles. The phase‐amplitude coupling of both slow waves and theta oscillations significantly increased with faster oscillations, including theta‐gamma coupling and the nesting of spindles, theta and gamma oscillations in the slow wave cycle. These results are further discussed in neural processing terms of the stress response and memory formation.

Collaboration


Dive into the Joana Martínez-Ricós's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Albert Adell

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge