Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joana Soares is active.

Publication


Featured researches published by Joana Soares.


Aquatic Toxicology | 2009

Disruption of zebrafish (Danio rerio) embryonic development after full life-cycle parental exposure to low levels of ethinylestradiol.

Joana Soares; Ana M. Coimbra; Maria Armanda Reis-Henriques; Nuno Miguel Monteiro; Maria Natividade Vieira; Jose Oliveira; P. Guedes-Dias; A. Fontaínhas-Fernandes; S. Silva Parra; Aline Carvalho; L. Filipe C. Castro; Miguel M. Santos

Exposure of fish to the synthetic estrogen ethinylestradiol (EE2) has been shown to induce a large set of deleterious effects. In addition to the negative impact of EE2 in reproductive endpoints, concern has recently increased on the potential effects of EE2 in fish embryonic development. Therefore, the present study aimed at examining the effects of EE2 on the full embryonic development of zebrafish in order to identify the actual phases where EE2 disrupts this process. Hence, zebrafish were exposed to environmentally relevant low levels of EE2, 0.5, 1 and 2ng/L (actual concentrations of 0.19, 0.24 and 1ng/L, respectively) from egg up to eight months of age (F(1)), and the survival as well as the occurrence of abnormalities in their offsprings (F(2)), per stage of embryonic development, was investigated. A thorough evaluation of reproductive endpoints and transcription of vtg1 gene in the parental generation (F(1)) at adulthood, was performed. No significant differences could be observed for the two lowest EE2 treatments, in comparison with controls, whereas vtg1 transcripts were significantly elevated (40-fold) in the 2ng/L EE2 treatment. In contrast to the findings in the F(1) generation,a significant concentration-dependent increase in egg mortality between 8 and 24hours post-fertilization (hpf) was observed for all EE2 treatments, when compared with controls. The screening of egg and embryo development showed a significant increase in the percentage of abnormalities at 8 hpf for the highest EE2 concentration, a fact that might explain the increased embryo mortality at the 24 hpf time-point observation. Taken together, these findings indicate that the two lowest tested EE2 concentations impact late gastrulation and/or early organogenesis, whereas exposure to 2ng/L EE2 also disrupts development in the blastula phase. After early organogenesis has been completed (24 hpf), no further mortality was observed. These results show that increased embryo mortality occurs at EE2 levels below those inducing reproductive impairment and vtg1 gene induction in the male parental generation, thus suggesting that EE2 may impact some fish populations at levels below those inducing an increase in vtg1 transcripts. Hence, these findings have important implications for environmental risk assessment, strongly supporting the inclusion of embryonic development studies in the screening of endocrine disruption in wild fish populations.


PLOS ONE | 2015

The Mammalian "Obesogen" Tributyltin Targets Hepatic Triglyceride Accumulation and the Transcriptional Regulation of Lipid Metabolism in the Liver and Brain of Zebrafish.

Angeliki Lyssimachou; Joana G. Santos; Ana André; Joana Soares; Daniela Lima; Laura Guimarães; C. Marisa R. Almeida; Catarina Teixeira; L. Filipe C. Castro; Miguel M. Santos

Recent findings indicate that different Endocrine Disrupting Chemicals (EDCs) interfere with lipid metabolic pathways in mammals and promote fat accumulation, a previously unknown site of action for these compounds. The antifoulant and environmental pollutant tributyltin (TBT), which causes imposex in gastropod snails, induces an “obesogenic” phenotype in mammals, through the activation of the nuclear receptors retinoid X receptor (RXR) and peroxisome proliferator-activated receptor gamma (PPARγ). In teleosts, the effects of TBT on the lipid metabolism are poorly understood, particularly following exposure to low, environmental concentrations. In this context, the present work shows that exposure of zebrafish to 10 and 50 ng/L of TBT (as Sn) from pre-hatch to 9 months of age alters the body weight, condition factor, hepatosomatic index and hepatic triglycerides in a gender and dose related manner. Furthermore, TBT modulated the transcription of key lipid regulating factors and enzymes involved in adipogenesis, lipogenesis, glucocorticoid metabolism, growth and development in the brain and liver of exposed fish, revealing sexual dimorphic effects in the latter. Overall, the present study shows that the model mammalian obesogen TBT interferes with triglyceride accumulation and the transcriptional regulation of lipid metabolism in zebrafish and indentifies the brain lipogenic transcription profile of fish as a new target of this compound.


FEBS Journal | 2012

New insights into cancer‐related proteins provided by the yeast model

Clara Pereira; Isabel Coutinho; Joana Soares; Cláudia Bessa; Mariana Leão; Lucília Saraiva

Cancer is a devastating disease with a profound impact on society. In recent years, yeast has provided a valuable contribution with respect to uncovering the molecular mechanisms underlying this disease, allowing the identification of new targets and novel therapeutic opportunities. Indeed, several attributes make yeast an ideal model system for the study of human diseases. It combines a high level of conservation between its cellular processes and those of mammalian cells, with advantages such as a short generation time, ease of genetic manipulation and a wealth of experimental tools for genome‐ and proteome‐wide analyses. Additionally, the heterologous expression of disease‐causing proteins in yeast has been successfully used to gain an understanding of the functions of these proteins and also to provide clues about the mechanisms of disease progression. Yeast research performed in recent years has demonstrated the tremendous potential of this model system, especially with the validation of findings obtained with yeast in more physiologically relevant models. The present review covers the major aspects of the most recent developments in the yeast research area with respect to cancer. It summarizes our current knowledge on yeast as a cellular model for investigating the molecular mechanisms of action of the major cancer‐related proteins that, even without yeast orthologues, still recapitulate in yeast some of the key aspects of this cellular pathology. Moreover, the most recent contributions of yeast genetics and high‐throughput screening technologies that aim to identify some of the potential causes underpinning this disorder, as well as discover new therapeutic agents, are discussed.


BioMed Research International | 2012

Contribution of Yeast Models to Neurodegeneration Research

Clara Pereira; Cláudia Bessa; Joana Soares; Mariana Leão; Lucília Saraiva

As a model organism Saccharomyces cerevisiae has greatly contributed to our understanding of many fundamental aspects of cellular biology in higher eukaryotes. More recently, engineered yeast models developed to study endogenous or heterologous proteins that lay at the root of a given disease have become powerful tools for unraveling the molecular basis of complex human diseases like neurodegeneration. Additionally, with the possibility of performing target-directed large-scale screenings, yeast models have emerged as promising first-line approaches in the discovery process of novel therapeutic opportunities against these pathologies. In this paper, several yeast models that have contributed to the uncovering of the etiology and pathogenesis of several neurodegenerative diseases are described, including the most common forms of neurodegeneration worldwide, Alzheimers, Parkinsons, and Huntingtons diseases. Moreover, the potential input of these cell systems in the development of more effective therapies in neurodegeneration, through the identification of genetic and chemical suppressors, is also addressed.


European Journal of Medicinal Chemistry | 2011

Aspartic vinyl sulfones: inhibitors of a caspase-3-dependent pathway

Paulo M.C. Glória; Isabel Coutinho; L. M. Gonçalves; Cristina Baptista; Joana Soares; Ana S. Newton; Rui Moreira; Lucília Saraiva; Maria M. M. Santos

In this article we describe an expanded structure-activity relationship study for vinyl sulfones as caspase-3 inhibitors, a topic virtually unexplored in the existing literature. Most remarkably, and to our surprise, tripeptidyl vinyl sulfones were not active for caspase-3, opposite to other examples described in literature for peptidyl vinyl sulfones as potent cysteine protease inhibitors of clan CA. Moreover, the caspase-3 inhibitory activity of vinyl sulfones using an in vitro assay was then confirmed using a yeast cell-based assay. The results show that Fmoc-protected vinyl sulfones containing only the Asp moiety are inhibitors of a caspase-3-dependent pathway and the IC50 values obtained in the yeast assay are in the same order of magnitude of that obtained with the caspase-3 inhibitor tetrapeptidyl chloromethyl ketone, Ac-DEVD-CMK. This observation is consistent with appropriate cell permeability properties displayed by the vinyl sulfone inhibitors, as reflected by logP values ranging from 1.1 to 3.4. Overall, these results suggest that vinyl sulfones containing Asp at P1 should be considered for further optimization as caspase inhibitors and modulators of caspase-3-dependent pathways.


Medicinal Research Reviews | 2016

Medicinal Chemistry Strategies to Disrupt the p53-MDM2/MDMX Interaction.

Agostinho Lemos; Mariana Leão; Joana Soares; Andreia Palmeira; Madalena Pinto; Lucília Saraiva; Maria Emília Sousa

The growth inhibitory activity of p53 tumor suppressor is tightly regulated by interaction with two negative regulatory proteins, murine double minute 2 (MDM2) and X (MDMX), which are overexpressed in about half of all human tumors. The elucidation of crystallographic structures of MDM2/MDMX complexes with p53 has been pivotal for the identification of several classes of inhibitors of the p53–MDM2/MDMX interaction. The present review provides in silico strategies and screening approaches used in drug discovery as well as an overview of the most relevant classes of small‐molecule inhibitors of the p53–MDM2/MDMX interaction, their progress in pipeline, and highlights particularities of each class of inhibitors. Most of the progress made with high‐throughput screening has led to the development of inhibitors belonging to the cis‐imidazoline, piperidinone, and spiro‐oxindole series. However, novel potent and selective classes of inhibitors of the p53–MDM2 interaction with promising antitumor activity are emerging. Even with the discovery of the 3D structure of complex p53–MDMX, only two small molecules were reported as selective p53–MDMX antagonists, WK298 and SJ‐172550. Dual inhibition of the p53–MDM2/MDMX interaction has shown to be an alternative approach since it results in full activation of the p53‐dependent pathway. The knowledge of structural requirements crucial to the development of small‐molecule inhibitors of the p53–MDMs interactions has enabled the identification of novel antitumor agents with improved in vivo efficacy.


Journal of Toxicology and Environmental Health | 2015

Effects of Tributyltin and Other Retinoid Receptor Agonists in Reproductive-Related Endpoints in the Zebrafish (Danio rerio).

Daniela Lima; L. Filipe C. Castro; Inês Coelho; Ricardo Lacerda; Manuel Gesto; Joana Soares; Ana André; Ricardo Capela; Tiago Torres; António Paulo Carvalho; Miguel M. Santos

Both field and experimental data examined the influence of exposure to environmental contaminant tributyltin (TBT) on marine organisms. Although most attention focused on the imposex phenomenon in gastropods, adverse effects were also observed in other taxonomic groups. It has been shown that imposex induction involves modulation of retinoid signaling in gastropods. Whether TBT influences similar pathways in fish is yet to be addressed. In this study, larvae of the model teleost Danio rerio were exposed to natural retinoids, all-trans-retinoic acid, 9-cis-retinoic acid, and all-trans-retinol, as well as to the RXR synthetic pan-agonist methoprene acid (MA) and to TBT. Larvae were exposed to TBT from 5 days post fertilization (dpf) to adulthood, and reproductive capacity was assessed and correlated with mode of action. TBT significantly decreased fecundity at environmentally relevant levels at 1 μg TBT Sn/g in diet. Interestingly, in contrast to previous reports, TBT altered zebrafish sex ratio toward females, whereas MA exposure biased sex toward males. Since fecundity was significantly altered in the TBT-exposed group with up to 62% decrease, the potentially affected pathways were investigated. Significant downregulation was observed in brain mRNA levels of aromatase b (CYP19a1b) in females and peroxisome proliferator activated receptor gamma (PPARg) in both males and females, suggesting an involvement of these pathways in reproductive impairment associated with TBT.


European Journal of Pharmaceutical Sciences | 2015

Oxazoloisoindolinones with in vitro antitumor activity selectively activate a p53-pathway through potential inhibition of the p53-MDM2 interaction

Joana Soares; Nuno A.L. Pereira; Ângelo Monteiro; Mariana Leão; Cláudia Bessa; Daniel Santos; Liliana Raimundo; Glória Queiroz; Alessandra Bisio; Alberto Inga; Clara Pereira; Maria M. M. Santos; Lucília Saraiva

One of the most appealing targets for anticancer treatment is the p53 tumor suppressor protein. In half of human cancers, this protein is inactivated due to endogenous negative regulators such as MDM2. Actually, restoring the p53 activity, particularly through the inhibition of its interaction with MDM2, is considered a valuable therapeutic strategy against cancers with a wild-type p53 status. In this work, we report the synthesis of nine enantiopure phenylalaninol-derived oxazolopyrrolidone lactams and the evaluation of their biological effects as p53-MDM2 interaction inhibitors. Using a yeast-based screening assay, two oxazoloisoindolinones, compounds 1b and 3a, were identified as potential p53-MDM2 interaction inhibitors. The molecular mechanism of oxazoloisoindolinone 3a was further validated in human colon adenocarcinoma HCT116 cells with wild-type p53 (HCT116 p53(+/+)) and in its isogenic derivative without p53 (HCT116 p53(-/-)). Indeed, using these cells, we demonstrated that oxazoloisoindolinone 3a exhibited a p53-dependent in vitro antitumor activity through induction of G0/G1-phase cell cycle arrest and apoptosis. The selective activation of a p53-apoptotic pathway by oxazoloisoindolinone 3a was further supported by the occurrence of PARP cleavage only in p53-expressing HCT116 cells. Moreover, oxazoloisoindolinone 3a led to p53 protein stabilization and to the up-regulation of p53 transcriptional activity with increased expression levels of several p53 target genes, as p21(WAF1/CIP1), MDM2, BAX and PUMA, in p53(+/+) but not in p53(-/-) HCT116 cells. Additionally, the ability of oxazoloisoindolinone 3a to block the p53-MDM2 interaction in HCT116 p53(+/+) cells was confirmed by co-immunoprecipitation. Finally, the molecular docking analysis of the interactions between the synthesized compounds and MDM2 revealed that oxazoloisoindolinone 3a binds to MDM2. Altogether, this work adds, for the first time, the oxazoloisoindolinone scaffold to the list of chemotypes activators of a wild-type p53-pathway with promising antitumor activity. Moreover, it may open the way to the development of a new class of p53-MDM2 interaction inhibitors.


Pharmacological Research | 2015

A tryptophanol-derived oxazolopiperidone lactam is cytotoxic against tumors via inhibition of p53 interaction with murine double minute proteins

Joana Soares; Liliana Raimundo; Nuno A.L. Pereira; Daniel Santos; Maria Pérez; Glória Queiroz; Mariana Leão; Maria M. M. Santos; Lucília Saraiva

Inactivation of the p53 tumor suppressor protein by interaction with murine double minute (MDM) proteins, MDM2 and MDMX, is a common event in human tumors expressing wild-type p53. In these tumors, the simultaneous inhibition of these interactions with MDMs, for a full p53 reactivation, represents a promising anticancer strategy. Herein, we report the identification of a dual inhibitor of the p53 interaction with MDM2 and MDMX, the (S)-tryptophanol derivative OXAZ-1, from the screening of a small library of enantiopure tryptophanol-derived oxazolopiperidone lactams, using a yeast-based assay. With human colon adenocarcinoma HCT116 cell lines expressing wild-type p53 (HCT116 p53(+/+)) and its p53-null isogenic derivative (HCT116 p53(-/-)), it was shown that OXAZ-1 induced a p53-dependent tumor growth-inhibitory effect. In fact, OXAZ-1 induced p53 stabilization, up-regulated p53 transcription targets, such as MDM2, MDMX, p21, Puma and Bax, and led to PARP cleavage, in p53(+/+), but not in p53(-/-), HCT116 cells. In addition, similar tumor cytotoxic effects were observed for OXAZ-1 against MDMX-overexpressing breast adenocarcinoma MCF-7 tumor cells, commonly described as highly resistant to MDM2-only inhibitors. In HCT116 p53(+/+) cells, the disruption of the p53 interaction with MDMs by OXAZ-1 was further confirmed by co-immunoprecipitation. It was also shown that OXAZ-1 potently triggered a p53-dependent mitochondria-mediated apoptosis, characterized by reactive oxygen species generation, mitochondrial membrane potential dissipation, Bax translocation to mitochondria, and cytochrome c release, and exhibited a p53-dependent synergistic effect with conventional chemotherapeutic drugs. Collectively, in this work, a novel selective activator of the p53 pathway is reported with promising antitumor properties to be explored either alone or combined with conventional chemotherapeutic drugs. Moreover, OXAZ-1 may represent a promising starting scaffold to search for new dual inhibitors of the p53-MDMs interaction.


Aquatic Toxicology | 2015

Chronic effects of clofibric acid in zebrafish (Danio rerio): a multigenerational study.

Ana M. Coimbra; Maria João Peixoto; Inês Coelho; Ricardo Lacerda; António Paulo Carvalho; Manuel Gesto; Angeliki Lyssimachou; Daniela Lima; Joana Soares; Ana André; Ana Capitão; Luís Filipe Costa Castro; Miguel M. Santos

Clofibric acid (CA) is an active metabolite of the blood lipid lowering agent clofibrate, a pharmaceutical designed to work as agonist of peroxisome proliferator-activated receptor alpha (PPARa). It is the most commonly reported fibrate in aquatic environments with low degradation rate and potential environmental persistence. Previous fish exposures showed that CA may impact spermatogenesis, growth and the expression of fat binding protein genes. However, there are limited data on the effects of chronic multigenerational CA exposures. Here, we assessed chronic multigenerational effects of CA exposure using zebrafish (Danio rerio) as a teleost model. Zebrafish were exposed through the diet to CA (1 and 10mg/g) during their whole lifetime. Growth, reproduction-related parameters and embryonic development were assessed in the exposed fish (F1 generation) and their offspring (F2 generation), together with muscle triglyceride content and gonad histology. In order to study the potential underlying mechanisms, the transcription levels of genes coding for enzymes involved in lipid metabolism pathways were determined. The results show that chronic life-cycle exposure to CA induced a significant reduction in growth of F1 generation and lowered triglyceride muscle content (10mg/g group). Also, an impact in male gonad development was observed together with a decrease in the fecundity (10mg/g group) and higher frequency of embryo abnormalities in the offspring of fish exposed to the lowest CA dose. The profile of the target genes was sex- and tissue-dependent. In F1 an up-regulation of male hepatic pparaa, pparb and acox transcript levels was observed, suggesting an activation of the fatty acid metabolism (provided that transcript level change indicates also a protein level change). Interestingly, the F2 generation, raised with control diet, displayed a response pattern different from that observed in F1, showing an increase in weight in the descendants of CA exposed fish, in comparison with control animals, which points to a multigenerational effect.

Collaboration


Dive into the Joana Soares's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge