Joanna Berlowska
Lodz University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joanna Berlowska.
Enzyme and Microbial Technology | 2013
Dorota Kręgiel; Joanna Berlowska; Wojciech Ambroziak
The aim of this research was to study how the cell immobilization technique of forming foamed alginate gels influences the growth, vitality and metabolic activity of different yeasts. Two distinct strains were used, namely conventional yeast (exemplified by Saccharomyces cerevisiae) and a non-conventional strain (exemplified by Debaryomyces occidentalis). The encapsulation of the yeast cells was performed by the traditional process of droplet formation, but from a foamed alginate solution. The activities of two key enzymes, succinate dehydrogenase and pyruvate decarboxylase, together with the ATP content were measured in both the free and immobilized cells. This novel method of yeast cell entrapment had some notable effects. The number of living immobilized cells reached the level of 10(6)-10(7) per single bead, and was stable during the fermentation process. Reductions in both enzyme activity and ATP content were observed in all immobilized yeasts. However, S. cerevisiae showed higher levels of ATP and enzymatic activity than D. occidentalis. Fermentation trials with immobilized repitching cells showed that the tested yeasts adapted to the specific conditions. Nevertheless, the mechanical endurance of the carriers and the internal structure of the gel need to be improved to enable broad applications of alginate gels in industrial fermentation processes, especially with conventional yeasts. This is one of the few papers and patents that describe the technique of cell immobilization in foamed alginate and shows the fermentative capacities and activities of key enzymes in immobilized yeast cells.
BioMed Research International | 2016
Joanna Berlowska; Katarzyna Pielech-Przybylska; Maria Balcerek; Urszula Dziekońska-Kubczak; Piotr Patelski; Piotr Dziugan; Dorota Kręgiel
Sugar beet pulp, a byproduct of sugar beet processing, can be used as a feedstock in second-generation ethanol production. The objective of this study was to investigate the effects of pretreatment, of the dosage of cellulase and hemicellulase enzyme preparations used, and of aeration on the release of fermentable sugars and ethanol yield during simultaneous saccharification and fermentation (SSF) of sugar beet pulp-based worts. Pressure-thermal pretreatment was applied to sugar beet pulp suspended in 2% w/w sulphuric acid solution at a ratio providing 12% dry matter. Enzymatic hydrolysis was conducted using Viscozyme and Ultraflo Max (Novozymes) enzyme preparations (0.015–0.02 mL/g dry matter). Two yeast strains were used for fermentation: Ethanol Red (S. cerevisiae) (1 g/L) and Pichia stipitis (0.5 g/L), applied sequentially. The results show that efficient simultaneous saccharification and fermentation of sugar beet pulp was achieved. A 6 h interval for enzymatic activation between the application of enzyme preparations and inoculation with Ethanol Red further improved the fermentation performance, with the highest ethanol concentration reaching 26.9 ± 1.2 g/L and 86.5 ± 2.1% fermentation efficiency relative to the theoretical yield.
World Journal of Microbiology & Biotechnology | 2013
Joanna Berlowska; Dorota Kręgiel; Wojciech Ambroziak
The adhesion of cells to solid supports is described as surface-dependent, being largely determined by the properties of the surface. In this study, ceramic surfaces modified using different organosilanes were tested for proadhesive properties using industrial brewery yeast strains in different physiological states. Eight brewing strains were tested: bottom-fermenting Saccharomyces pastorianus and top-fermenting Saccharomyces cerevisiae. To determine adhesion efficiency light microscopy, scanning electron microscopy and the fluorymetric method were used. Modification of chamotte carriers by 3-(3-anino-2-hydroxy-1-propoxy) propyldimethoxysilane and 3-(N, N-dimethyl-N-2-hydroxyethyl) ammonium propyldimethoxysilane groups increased their biomass load significantly.
Enzyme and Microbial Technology | 2015
Joanna Berlowska; Marta Dudkiewicz; Dorota Kręgiel; Agata Czyżowska; Izabela Witonska
This paper presents the results of a study to determine the effect of Quillaja saponaria saponins on the lysis of industrial yeast strains. Cell lysis induced by saponin from Q. saponaria combined with the plasmolysing effect of 5% NaCl for Saccharomyces cerevisiae, Kluyveromyces marxianus yeasts biomass was conducted at 50 °C for 24-48 h. Membrane permeability and integrity of the yeast cells were monitored using fluorescent techniques and concentrations of proteins, free amino nitrogen (FAN) and free amino acids in resulting lysates were analyzed. Protein release was significantly higher in the case of yeast cell lysis promoted with 0.008% Q. saponaria and 5% NaCl in comparison to plasmolysis triggered by NaCl only.
RSC Advances | 2015
Joanna Berlowska; Michał Binczarski; Marta Dudkiewicz; Halina Kalinowska; Izabela Witonska; Andrei Stanishevsky
A new low-cost pathway for the production of high-value propylene glycol (PG) is proposed. This route of waste biomass utilization employs catalytic reduction of lactic acid obtained from fermented enzymatic digests of sugar beet pulp.
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2013
Joanna Berlowska; Dorota Kręgiel; Wojciech Ambroziak
In this study yeast cell physiological activity was assessed on the basis of the in situ activity of two important enzymes, succinate dehydrogenase and pyruvate decarboxylase. FUN1 dye bioconversion and cellular ATP content were also taken as important indicators of yeast cell activity. The study was conducted on six brewing yeast strains, which were either free cells or immobilized on a chamotte carrier. The experimental data obtained indicate clearly that, in most cases, the immobilized cells showed lower enzyme activity than free cells from analogous cultures. Pyruvate decarboxylase activity in immobilized cells was higher than in planktonic cell populations only in the case of the Saccharomyces pastorianus 680 strain. However, in a comparative assessment of the fermentation process, conducted with the use of free and immobilized cells, much more favorable dynamics and carbon dioxide productivity were observed in immobilized cells, especially in the case of brewing lager yeast strains. This may explain the higher total cell density per volume unit of the fermented medium and the improved resistance of immobilized cells to environmental changes.
Molecules | 2016
Joanna Berlowska; Weronika Cieciura; Sebastian Borowski; Marta Dudkiewicz; Michał Binczarski; Izabela Witonska; Anna Otlewska; Dorota Kręgiel
Research into fermentative production of lactic acid from agricultural by-products has recently concentrated on the direct conversion of biomass, whereby pure sugars are replaced with inexpensive feedstock in the process of lactic acid production. In our studies, for the first time, the source of carbon used is sugar beet pulp, generated as a by-product of industrial sugar production. In this paper, we focus on the simultaneous saccharification of lignocellulosic biomass and fermentation of lactic acid, using mixed cultures with complementary assimilation profiles. Lactic acid is one of the primary platform chemicals, and can be used to synthesize a wide variety of useful products, including green propylene glycol. A series of controlled batch fermentations was conducted under various conditions, including pretreatment with enzymatic hydrolysis. Inoculation was performed in two sequential stages, to avoid carbon catabolite repression. Biologically-synthesized lactic acid was catalytically reduced to propylene glycol over 5% Ru/C. The highest lactic acid yield was obtained with mixed cultures. The yield of propylene glycol from the biological lactic acid was similar to that obtained with a water solution of pure lactic acid. Our results show that simultaneous saccharification and fermentation enables generation of lactic acid, suitable for further chemical transformations, from agricultural residues.
Yeast | 2014
Joanna Berlowska; Dorota Kręgiel; Katarzyna Rajkowska
We investigated the genetic, biochemical, fermentative and physiological characteristics of brewery yeast strains and performed a hierarchical cluster analysis to evaluate their similarity. We used five different ale and lager yeast strains, originating from different European breweries and deposited at the National Collection of Yeast Cultures (UK). Ale and lager strains exhibited different genomic properties, but their assimilation profiles and pyruvate decarboxylase activities corresponded to their species classifications. The activity of another enzyme, succinate dehydrogenase, varied between different brewing strains. Our results confirmed that ATP and glycogen content, and the activity of the key metabolic enzymes succinate dehydrogenase and pyruvate decarboxylase, may be good general indicators of cell viability. However, the genetic properties, physiology and fermentation capacity of different brewery yeasts are unique to individual strains. Copyright
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2018
Dorota Kręgiel; Steve A. James; Anna Rygała; Joanna Berlowska; Hubert Antolak; Ewelina Pawlikowska
Yeast strains and acetic acid bacteria were isolated from spoiled soft drinks with characteristic flocs as a visual defect. Polymerase chain reaction and amplification of a partial region of the LSU rRNA gene identified the bacteria as Asaia spp. Sequence analysis of the D1/D2 region of the 26S rDNA in turn identified the yeast isolates as Wickerhamomyces anomalus, Dekkera bruxellensis and Rhodotorula mucilaginosa. The hydrophobicity and adhesion properties of the yeasts were evaluated in various culture media, taking into account the availability of nutrients and the carbon sources. The highest hydrophobicity and best adhesion properties were exhibited by the R. mucilaginosa cells. Our results suggest that Asaia spp. bacterial cells were responsible for the formation of flocs, while the presence of yeast cells may help to strengthen the structure of co-aggregates.
Archive | 2017
Dorota Kręgiel; Joanna Berlowska; Izabela Witonska; HubertAntolak; Charalampos Proestos; Mirko Babić; Ljiljana Babić; Bolin Zhang
Plants have the ability to synthesize almost unlimited number of substances. In many cases, these chemicals serve in plant defense mechanisms against microorganisms, insects, and herbivores. Generally, any part of the plant may contain the various active ingredients. Among the plant, active compounds are saponins, which are traditionally used as natural detergents. The name ‘saponin’ comes from the Latin word ‘sapo,’ which means ‘soap’ as saponins show the unique properties of foaming and emulsifying agents. Steroidal and triterpenoid saponins can be used in many industrial applications, from the preparation of steroid hormones in the pharmaceutical industry to utilization as food additives that exploit their non‐ionic surfactant properties. Saponins also exhibit dif‐ ferent biological activities. This chapter has been prepared by participants of the Marie Sklodowska‐Curie Action—Research and Innovation Staff Exchange (RISE) in the frame‐ work of the proposal ‘ECOSAPONIN.’ Interactions between the participants, including chemists, physicists, technologists, microbiologists and botanists from four countries, will contribute to the development of collaborative ties and further promote research and development in the area of saponins in Europe and China. Although this chapter cannot provide a comprehensive account of the state of knowledge regarding plant saponins, we hope that it will help make saponins the focus of ongoing international cooperation.