Joanna Cichy
Jagiellonian University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joanna Cichy.
Science | 2009
Joanna Wegrzyn; Ramesh Potla; Yong Joon Chwae; Naresh Babu V. Sepuri; Qifang Zhang; Thomas Koeck; Marta Derecka; Karol Szczepanek; Magdalena Szelag; Agnieszka Olga Gornicka; Akira Moh; Shadi Moghaddas; Qun Chen; Santha Bobbili; Joanna Cichy; Jozef Dulak; Darren P. Baker; Alan Wolfman; Dennis J. Stuehr; Medhat O. Hassan; Xin-Yuan Fu; Narayan G. Avadhani; Jennifer I. Drake; Paul Fawcett; Edward J. Lesnefsky; Andrew C. Larner
Cytokines such as interleukin-6 induce tyrosine and serine phosphorylation of Stat3 that results in activation of Stat3-responsive genes. We provide evidence that Stat3 is present in the mitochondria of cultured cells and primary tissues, including the liver and heart. In Stat3–/– cells, the activities of complexes I and II of the electron transport chain (ETC) were significantly decreased. We identified Stat3 mutants that selectively restored the proteins function as a transcription factor or its functions within the ETC. In mice that do not express Stat3 in the heart, there were also selective defects in the activities of complexes I and II of the ETC. These data indicate that Stat3 is required for optimal function of the ETC, which may allow it to orchestrate responses to cellular homeostasis.
Journal of Cell Biology | 2003
Joanna Cichy; Ellen Puré
CD44 was once thought to simply be a transmembrane adhesion molecule that also played a role in the metabolism of its principal ligand hyaluronan. Investigations of CD44 over the past ∼20 yr have established additional functions for CD44, including its capacity to mediate inflammatory cell function and tumor growth and metastasis. It has also become evident that intricate posttranslational modifications of CD44 regulate the affinity of the receptor for its ligands. In this review, we focus on emerging evidence that functional fragments of the cytoplasmic and ectodomain of CD44 can be liberated by enzymatic modification of cell surfaces as well as of cell-associated matrix. Based on the evidence discussed, we propose that CD44 exists in three phases, as a transmembrane receptor, as an integral component of the matrix, and as a soluble protein found in body fluids, each with biologically significant functions of which some are shared and some distinct. Thus, CD44 represents a model for understanding posttranslational processing and its emerging role as a general mechanism for regulating cell behavior.
Journal of Experimental Medicine | 2010
Athena Chalaris; Nina Adam; Christian Sina; Philip Rosenstiel; Judith Lehmann-Koch; Peter Schirmacher; Dieter Hartmann; Joanna Cichy; Olga Gavrilova; Stefan Schreiber; Thomas Jostock; Vance B. Matthews; Robert Häsler; Christoph Becker; Markus F. Neurath; Karina Reiß; Paul Saftig; Jürgen Scheller; Stefan Rose-John
The protease a disintegrin and metalloprotease (ADAM) 17 cleaves tumor necrosis factor (TNF), L-selectin, and epidermal growth factor receptor (EGF-R) ligands from the plasma membrane. ADAM17 is expressed in most tissues and is up-regulated during inflammation and cancer. ADAM17-deficient mice are not viable. Conditional ADAM17 knockout models demonstrated proinflammatory activities of ADAM17 in septic shock via shedding of TNF. We used a novel gene targeting strategy to generate mice with dramatically reduced ADAM17 levels in all tissues. The resulting mice called ADAM17ex/ex were viable, showed compromised shedding of ADAM17 substrates from the cell surface, and developed eye, heart, and skin defects as a consequence of impaired EGF-R signaling caused by failure of shedding of EGF-R ligands. Unexpectedly, although the intestine of unchallenged homozygous ADAM17ex/ex mice was normal, ADAM17ex/ex mice showed substantially increased susceptibility to inflammation in dextran sulfate sodium colitis. This was a result of impaired shedding of EGF-R ligands resulting in failure to phosphorylate STAT3 via the EGF-R and, consequently, in defective regeneration of epithelial cells and breakdown of the intestinal barrier. Besides regulating the systemic availability of the proinflammatory cytokine TNF, our results demonstrate that ADAM17 is needed for vital regenerative activities during the immune response. Thus, our mouse model will help investigate ADAM17 as a potential drug target.
Journal of Biological Chemistry | 1997
Joanna Cichy; Jan Potempa; James Travis
Destruction of components of the extracellular matrix of the lung by neutrophil elastase is believed to be a critical event in the development of obstructive lung disease. The local synthesis of α1-proteinase inhibitor, the controlling inhibitor of this enzyme, may provide a partial mechanism for neutrophil elastase regulation, especially during inflammation, when proteolytic enzymes are released from phagocytes. In this study, we show that lung-derived epithelial cells not only have the capacity to synthesize functional α1-PI but also to increase the rate of its production when stimulated by specific inflammatory mediators, including oncostatin M, interleukin-1, and the glucocorticoid analogue, dexamethasone.
Journal of Biological Chemistry | 2011
Karol Szczepanek; Qun Chen; Marta Derecka; Fadi N. Salloum; Qifang Zhang; Magdalena Szelag; Joanna Cichy; Rakesh C. Kukreja; Jozef Dulak; Edward J. Lesnefsky; Andrew C. Larner
Expression of the STAT3 transcription factor in the heart is cardioprotective and decreases the levels of reactive oxygen species. Recent studies indicate that a pool of STAT3 resides in the mitochondria where it is necessary for the maximal activity of complexes I and II of the electron transport chain. However, it has not been explored whether mitochondrial STAT3 modulates cardiac function under conditions of stress. Transgenic mice with cardiomyocyte-specific overexpression of mitochondria-targeted STAT3 with a mutation in the DNA-binding domain (MLS-STAT3E) were generated. We evaluated the role of mitochondrial STAT3 in the preservation of mitochondrial function during ischemia. Under conditions of ischemia heart mitochondria expressing MLS-STAT3E exhibited modest decreases in basal activities of complexes I and II of the electron transport chain. In contrast to WT hearts, complex I-dependent respiratory rates were protected against ischemic damage in MLS-STAT3E hearts. MLS-STAT3E prevented the release of cytochrome c into the cytosol during ischemia. In contrast to WT mitochondria, ischemia did not augment reactive oxygen species production in MLS-STAT3E mitochondria likely due to an MLS-STAT3E-mediated partial blockade of electron transport through complex I. Given the caveat of STAT3 overexpression, these results suggest a novel protective mechanism mediated by mitochondrial STAT3 that is independent of its canonical activity as a nuclear transcription factor.
Biochemical and Biophysical Research Communications | 2009
Joanna Skrzeczynska-Moncznik; K. Wawro; Anna Stefanska; E. Oleszycka; Paulina Kulig; Brian A. Zabel; M. Sułkowski; Monika Kapinska-Mrowiecka; M. Czubak-Macugowska; Eugene C. Butcher; Joanna Cichy
Interferon alpha-producing plasmacytoid dendritic cells (pDC) are crucial contributors to pro-inflammatory or tolerogenic immune responses and are important in autoimmune diseases such as psoriasis. pDC accumulate in the lesional skin of psoriasis patients, but are rarely found in the affected skin of patients with atopic dermatitis (AD). While homeostatic chemokine CXCL12 and inducible pro-inflammatory CXCR3 chemokine ligands may regulate pDC influx to psoriatic skin, the mechanism responsible for selective pDC recruitment in psoriasis vs. AD remains unknown. Circulating pDC from normal donors express a limited number of chemoattractant receptors, including CXCR3 and CMKLR1 (chemokine-like receptor 1). In this work, we demonstrate that circulating pDC from normal donors as well as psoriasis and AD patients express similar levels of CXCR3 and responded similarly in functional migration assays to CXCL10. We next found that blood pDC from normal, AD, and psoriasis patients express functional CMKLR1. In contrast to normal skin, however, lesional skin from psoriasis patients contains the active form of the CMKLR1 ligand chemerin. Furthermore, in affected skin from psoriatic patients the level of active chemerin was generally higher than in AD skin. Taken together, these results indicate that local generation of active chemerin may contribute to pDC recruitment to psoriatic skin.
Experimental Eye Research | 2014
Katarzyna Brodowska; Ahmad Al-Moujahed; Anna Marmalidou; Melissa Meyer zu Horste; Joanna Cichy; Joan W. Miller; Evangelos S. Gragoudas; Demetrios G. Vavvas
Verteporfin (VP), a benzoporphyrin derivative, is clinically used in photodynamic therapy for neovascular macular degeneration. Recent studies indicate that VP may inhibit growth of hepatoma cells without photoactivation through inhibition of YAP-TEAD complex. In this study, we examined the effects of VP without light activation on human retinoblastoma cell lines. Verteporfin but not vehicle control inhibited the growth, proliferation and viability of human retinoblastoma cell lines (Y79 and WERI) in a dose-dependent manner and was associated with downregulation of YAP-TEAD associated downstream proto-oncogenes such as c-myc, Axl, and surviving. In addition VP affected signals involved in cell migration and angiogenesis such as CTGF, cyr61, and VEGF-A but was not associated with significant effect on the mTOR/autophagy pathway. Of interest the pluripotency marker Oct4 were downregulated by Verteporfin treatment. Our results indicate that the clinically used photosensitizer VP is a potent inhibitor of cell growth in retinoblastoma cells, disrupting YAP-TEAD signaling and pluripotential marker OCT4. This study highlights for the first time the role of the YAP-TEAD pathway in Retinoblastoma and suggests that VP may be a useful adjuvant therapeutic tool in treating Rb patients.
Journal of Immunology | 2007
Paulina Kulig; Brian A. Zabel; Grzegorz Dubin; Samantha J. Allen; Takao Ohyama; Jan Potempa; Tracy M. Handel; Eugene C. Butcher; Joanna Cichy
Chemerin is an attractant for cells that express the serpentine receptor CMKLR1, which include immature plasmacytoid dendritic cells (pDC) and macrophages. Chemerin circulates in the blood where it exhibits low biological activity, but upon proteolytic cleavage of its C terminus, it is converted to a potent chemoattractant. Enzymes that contribute to this conversion include host serine proteases of the coagulation, fibrinolytic, and inflammatory cascades, and it has been postulated that recruitment of pDC and macrophages by chemerin may serve to balance local tissue immune and inflammatory responses. In this work, we describe a potent, pathogen-derived proteolytic activity capable of chemerin activation. This activity is mediated by staphopain B (SspB), a cysteine protease secreted by Staphylococcus aureus. Chemerin activation is triggered by growth medium of clinical isolates of SspB-positive S. aureus, but not by that of a SspBnull mutant. C-terminal processing by SspB generates a chemerin isoform identical with the active endogenous attractant isolated from human ascites fluid. Interestingly, SspB is a potent trigger of chemerin even in the presence of plasma inhibitors. SspB may help direct the recruitment of specialized host cells, including immunoregulatory pDC and/or macrophages, contributing to the ability of S. aureus to elicit and maintain a chronic inflammatory state.
Cell Metabolism | 2012
Marta Derecka; Agnieszka Gornicka; Sergei B. Koralov; Karol Szczepanek; Magdalena Morgan; Vidisha Raje; Jennifer Sisler; Qifang Zhang; Dennis C. Otero; Joanna Cichy; Klaus Rajewsky; Kazuya Shimoda; Valeria Poli; Birgit Strobl; Sandra Pellegrini; Thurl E. Harris; Patrick Seale; Aaron P. Russell; Andrew J. McAinch; Paul E. O’Brien; Susanna R. Keller; Colleen M. Croniger; Tomasz Kordula; Andrew C. Larner
Mice lacking the Jak tyrosine kinase member Tyk2 become progressively obese due to aberrant development of Myf5+ brown adipose tissue (BAT). Tyk2 RNA levels in BAT and skeletal muscle, which shares a common progenitor with BAT, are dramatically decreased in mice placed on a high-fat diet and in obese humans. Expression of Tyk2 or the constitutively active form of the transcription factor Stat3 (CAStat3) restores differentiation in Tyk2(-/-) brown preadipocytes. Furthermore, Tyk2(-/-) mice expressing CAStat3 transgene in BAT also show improved BAT development, normal levels of insulin, and significantly lower body weights. Stat3 binds to PRDM16, a master regulator of BAT differentiation, and enhances the stability of PRDM16 protein. These results define Tyk2 and Stat3 as critical determinants of brown fat lineage and suggest that altered levels of Tyk2 are associated with obesity in both rodents and humans.
Journal of Immunology | 2011
Paulina Kulig; Tomasz Kantyka; Brian A. Zabel; Magdalena Banaś; Agnieszka Chyra; Anna Stefanska; Hua Tu; Samantha J. Allen; Tracy M. Handel; Andrzej Kozik; Jan Potempa; Eugene C. Butcher; Joanna Cichy
Chemerin, a ligand for the G-protein coupled receptor chemokine-like receptor 1, requires C-terminal proteolytic processing to unleash its chemoattractant activity. Proteolytically processed chemerin selectively attracts specific subsets of immunoregulatory APCs, including chemokine-like receptor 1-positive immature plasmacytoid dendritic cells (pDC). Chemerin is predicted to belong to the structural cathelicidin/cystatin family of proteins composed of antibacterial polypeptide cathelicidins and inhibitors of cysteine proteinases (cystatins). We therefore hypothesized that chemerin may interact directly with cysteine proteases, and that it might also function as an antibacterial agent. In this article, we show that chemerin does not inhibit human cysteine proteases, but rather is a new substrate for cathepsin (cat) K and L. cat K- and L-cleaved chemerin triggered robust migration of human blood-derived pDC ex vivo. Furthermore, cat K- and L-truncated chemerin also displayed antibacterial activity against Enterobacteriaceae. Cathepsins may therefore contribute to host defense by activating chemerin to directly inhibit bacterial growth and to recruit pDC to sites of infection.