Joanna F. Flatt
NHS Blood and Transplant
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joanna F. Flatt.
Blood | 2011
Joanna F. Flatt; Hélène Guizouarn; Nicholas Burton; Franck Borgese; Richard J Tomlinson; Rob Forsyth; Stephen A. Baldwin; Bari E Levinson; Philippe Quittet; Patricia Aguilar-Martinez; Jean Delaunay; Gordon W. Stewart; Lesley J. Bruce
The hereditary stomatocytoses are a series of dominantly inherited hemolytic anemias in which the permeability of the erythrocyte membrane to monovalent cations is pathologically increased. The causative mutations for some forms of hereditary stomatocytosis have been found in the transporter protein genes, RHAG and SLC4A1. Glucose transporter 1 (glut1) deficiency syndromes (glut1DSs) result from mutations in SLC2A1, encoding glut1. Glut1 is the main glucose transporter in the mammalian blood-brain barrier, and glut1DSs are manifested by an array of neurologic symptoms. We have previously reported 2 cases of stomatin-deficient cryohydrocytosis (sdCHC), a rare form of stomatocytosis associated with a cold-induced cation leak, hemolytic anemia, and hepatosplenomegaly but also with cataracts, seizures, mental retardation, and movement disorder. We now show that sdCHC is associated with mutations in SLC2A1 that cause both loss of glucose transport and a cation leak, as shown by expression studies in Xenopus oocytes. On the basis of a 3-dimensional model of glut1, we propose potential mechanisms underlying the phenotypes of the 2 mutations found. We investigated the loss of stomatin during erythropoiesis and find this occurs during reticulocyte maturation and involves endocytosis. The molecular basis of the glut1DS, paroxysmal exercise-induced dyskinesia, and sdCHC phenotypes are compared and discussed.
Frontiers in Physiology | 2014
Joanna F. Flatt; Waleed M. Bawazir; Lesley J. Bruce
Stored blood components are a critical life-saving tool provided to patients by health services worldwide. Red cells may be stored for up to 42 days, allowing for efficient blood bank inventory management, but with prolonged storage comes an unwanted side-effect known as the “storage lesion”, which has been implicated in poorer patient outcomes. This lesion is comprised of a number of processes that are inter-dependent. Metabolic changes include a reduction in glycolysis and ATP production after the first week of storage. This leads to an accumulation of lactate and drop in pH. Longer term damage may be done by the consequent reduction in anti-oxidant enzymes, which contributes to protein and lipid oxidation via reactive oxygen species. The oxidative damage to the cytoskeleton and membrane is involved in increased vesiculation and loss of cation gradients across the membrane. The irreversible damage caused by extensive membrane loss via vesiculation alongside dehydration is likely to result in immediate splenic sequestration of these dense, spherocytic cells. Although often overlooked in the literature, the loss of the cation gradient in stored cells will be considered in more depth in this review as well as the possible effects it may have on other elements of the storage lesion. It has now become clear that blood donors can exhibit quite large variations in the properties of their red cells, including microvesicle production and the rate of cation leak. The implications for the quality of stored red cells from such donors is discussed.
Haematologica | 2010
Emile van den Akker; Timothy J. Satchwell; Stephanie Pellegrin; Joanna F. Flatt; Michel Maigre; Geoff Daniels; Jean Delaunay; Lesley J. Bruce; Ashley M. Toye
Background Protein 4.2 deficiency caused by mutations in the EPB42 gene results in hereditary spherocytosis with characteristic alterations of CD47, CD44 and RhAG. We decided to investigate at which stage of erythropoiesis these hallmarks of protein 4.2 deficiency arise in a novel protein 4.2 patient and whether they cause disruption to the band 3 macrocomplex. Design and Methods We used immunoprecipitations and detergent extractability to assess the strength of protein associations within the band 3 macrocomplex and with the cytoskeleton in erythrocytes. Patient erythroblasts were cultured from peripheral blood mononuclear cells to study the effects of protein 4.2 deficiency during erythropoiesis. Results We report a patient with two novel mutations in EPB42 resulting in complete protein 4.2 deficiency. Immunoprecipitations revealed a weakened ankyrin-1-band 3 interaction in erythrocytes resulting in increased band 3 detergent extractability. CD44 abundance and its association with the cytoskeleton were increased. Erythroblast differentiation revealed that protein 4.2 and band 3 appear simultaneously and associate early in differentiation. Protein 4.2 deficiency results in lower CD47, higher CD44 expression and increased RhAG glycosylation starting from the basophilic stage. The normal downregulation of CD44 expression was not seen during protein 4.2(−) erythroblast differentiation. Knockdown of CD47 did not increase CD44 expression, arguing against a direct reciprocal relationship. Conclusions We have established that the characteristic changes caused by protein 4.2 deficiency occur early during erythropoiesis. We postulate that weakening of the ankyrin-1-band 3 association during protein 4.2 deficiency is compensated, in part, by increased CD44-cytoskeleton binding.
The Journal of Clinical Endocrinology and Metabolism | 2012
Waleed M. Bawazir; Evelien F. Gevers; Joanna F. Flatt; Ai Leen Ang; Benjamin Jacobs; Caroline Oren; Stephanie Grunewald; Mehul T. Dattani; Lesley J. Bruce; Gordon W. Stewart
CONTEXT GLUT1 (glucose transporter 1) deficiency syndrome is a well-known presentation in pediatric practice. Very rare mutations not only disable carbohydrate transport but also cause the red cell membrane to be constitutively permeant to monovalent cations, namely sodium and potassium. OBJECTIVE The aim of this study was to describe the pediatric presentation of a patient with GLUT1 deficiency with such a cation-leaky state. SUBJECT AND METHODS The infant presented with erratic hyperkalemia, neonatal hyperbilirubinemia, anemia, hepatic dysfunction, and microcephaly. Later, seizures occurred and developmental milestones were delayed. Magnetic resonance imaging and computerized tomography scans of the brain showed multiple abnormalities including periventricular calcification. Visual impairment was present due to the presence of both cataracts and retinal dysfunction. RESULTS Measurements of red cell cation content showed extremely leaky red cells (causing the hemolysis) and temperature-dependent loss of potassium from red cells (explaining the hyperkalemia as pseudohyperkalemia). A trinucleotide deletion in SLC2A1, coding for the deletion of isoleucine 435 or 436 in GLUT1, was identified in the proband. CONCLUSION This is the fourth pedigree to be described with this most unusual syndrome. The multisystem pathology probably reflects a combination of glucose transport deficiency at the blood-brain barrier (as in typical GLUT1 deficiency) and the deleterious osmotic effects of a cation-leaky membrane protein in the cells where GLUT1 is expressed, notably the red cell. We hope that this detailed description will facilitate rapid diagnosis of this disease entity.
Blood | 2015
Tosti J. Mankelow; Rebecca E. Griffiths; Sara Trompeter; Joanna F. Flatt; Nicola Cogan; Edwin Massey; David J. Anstee
During maturation to an erythrocyte, a reticulocyte must eliminate any residual organelles and reduce its surface area and volume. Here we show this involves a novel process whereby large, intact, inside-out phosphatidylserine (PS)-exposed autophagic vesicles are extruded. Cell surface PS is a well-characterized apoptotic signal initiating phagocytosis. In peripheral blood from patients after splenectomy or in patients with sickle cell disease (SCD), the number of circulating red cells exposing PS on their surface is elevated. We show that in these patients PS is present on the cell surface of red cells in large (∼1.4 µm) discrete areas corresponding to autophagic vesicles. The autophagic vesicles found on reticulocytes are identical to those observed on red cells from splenectomized individuals and patients with SCD. Our data suggest the increased thrombotic risk associated with splenectomy, and patients with hemoglobinopathies is a possible consequence of increased levels of circulating mature reticulocytes expressing inside-out PS-exposed autophagic vesicles because of asplenia.
Haematologica | 2009
Joanna F. Flatt; Lesley J. Bruce
Hereditary stomatocytosis describes a wide spectrum of autosomal dominantly inherited hemolytic disorders in which the basal red cell membrane cation permeability is increased. In this perspective article, Drs. Flatt and Bruce summarize our current knowledge in the field. See related article on page 1049.
Blood | 2014
Véronique Picard; Alexis Proust; Marion Eveillard; Joanna F. Flatt; Marie-Laure Couec; Gaêlle Caillaux; Madeleine Fénéant-Thibault; Arie Finkelstein; Martine Raphael; Jean Delaunay; Lesley J. Bruce; Serge Pissard; Caroline Thomas
To the editor: Southeast Asian ovalocytosis (SAO) is caused by a heterozygous 27-nucleotide deletion in SLC4A1 coding for band 3, the anion-exchange protein of the red cell membrane.[1][1][⇓][2]-[3][3] This asymptomatic dominant trait is considered as a host genetic adaptation to malaria in
Autophagy | 2016
Tosti J. Mankelow; Rebecca E. Griffiths; Sara Trompeter; Joanna F. Flatt; Nicola Cogan; Edwin Massey; David J. Anstee
ABSTRACT Autophagy plays an important role in the removal of membrane bound organelles during the last stage of erythropoiesis as the enucleate reticulocyte matures into the erythrocyte. Autophagic vesicles are expelled from the reticulocyte as intact, inside-out, phosphatidylserine (PS) decorated vesicles and are subsequently removed during splenic passage. Failure to remove these vesicles causes the elevation in PS exposed red cells in Sickle Cell Disease.
Pediatric Blood & Cancer | 2017
Leo Kager; Lesley J. Bruce; Petra Zeitlhofer; Joanna F. Flatt; Tabita M. Maia; M. Letícia Ribeiro; Bernhard Fahrner; Gerhard Fritsch; Kaan Boztug; Oskar A. Haas
We describe the second patient with anionic exchanger 1/band 3 null phenotype (band 3 nullVIENNA), which was caused by a novel nonsense mutation c.1430C>A (p.Ser477X) in exon 12 of SLC4A1. We also update on the previous band 3 nullCOIMBRA patient, thereby elucidating the physiological implications of total loss of AE1/band 3. Besides transfusion‐dependent severe hemolytic anemia and complete distal renal tubular acidosis, dyserythropoiesis was identified in the band 3 nullVIENNA patient, suggesting a role for band 3 in erythropoiesis. Moreover, we also, for the first time, report that long‐term survival is possible in band 3 null patients.
Frontiers in Physiology | 2018
Joanna F. Flatt; Lesley J. Bruce
Normal human RBCs have a very low basal permeability (leak) to cations, which is continuously corrected by the Na,K-ATPase. The leak is temperature-dependent, and this temperature dependence has been evaluated in the presence of inhibitors to exclude the activity of the Na,K-ATPase and NaK2Cl transporter. The severity of the RBC cation leak is altered in various conditions, most notably the hereditary stomatocytosis group of conditions. Pedigrees within this group have been classified into distinct phenotypes according to various factors, including the severity and temperature-dependence of the cation leak. As recent breakthroughs have provided more information regarding the molecular basis of hereditary stomatocytosis, it has become clear that these phenotypes elegantly segregate with distinct genetic backgrounds. The cryohydrocytosis phenotype, including South-east Asian Ovalocytosis, results from mutations in SLC4A1, and the very rare condition, stomatin-deficient cryohydrocytosis, is caused by mutations in SLC2A1. Mutations in RHAG cause the very leaky condition over-hydrated stomatocytosis, and mutations in ABCB6 result in familial pseudohyperkalemia. All of the above are large multi-spanning membrane proteins and the mutations may either modify the structure of these proteins, resulting in formation of a cation pore, or otherwise disrupt the membrane to allow unregulated cation movement across the membrane. More recently mutations have been found in two RBC cation channels, PIEZO1 and KCNN4, which result in dehydrated stomatocytosis. These mutations alter the activation and deactivation kinetics of these channels, leading to increased opening and allowing greater cation fluxes than in wild type.