Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joanna M. Hill is active.

Publication


Featured researches published by Joanna M. Hill.


Neuropeptides | 2007

Social approach behaviors in oxytocin knockout mice: Comparison of two independent lines tested in different laboratory environments

Jacqueline N. Crawley; Thomas Chen; Amit Puri; Richard Washburn; Timothy L. Sullivan; Joanna M. Hill; Nancy B. Young; Jessica J. Nadler; Sheryl S. Moy; Larry J. Young; Heather K. Caldwell; W. Scott Young

Oxytocin mediates social affiliation behaviors and social memory in rodents. It has been suggested that disruptions in oxytocin contribute to the deficits in reciprocal social interactions that characterize autism. The present experiments employed a new social approach task for mice which is designed to detect low levels of sociability, representing the first diagnostic criterion for autism. Two lines of oxytocin knockout mice were tested, the National Institute of Mental Health line in Bethesda, and the Baylor/Emory line at the University of North Carolina in Chapel Hill. Similar methods were used for each line to evaluate tendencies to spend time with a stranger mouse versus with an inanimate novel object with no social valence. Adult C57BL/6J males were tested identically, as controls to confirm the robustness of the methods used in the social task. Comprehensive phenotyping of general health, neurological reflexes, olfactory and other sensory abilities, and motor functions was employed to assess both lines. No genotype differences were detected in any of the control measures for either line. Normal sociability, measured as time spent with a novel stranger mouse as compared to time spent with a novel object, was seen in both the NIMH and the Baylor/Emory lines of oxytocin null mutants, heterozygotes, and wild-type littermate controls. Normal preference for social novelty, measured as time spent with a second novel stranger as compared to time spent with a more familiar mouse, was seen in both the NIMH and the Baylor/Emory lines of oxytocin null mutants, heterozygotes, and wild-type littermate controls, with minor exceptions. Similar behavioral results from two independent targeted gene mutations, generated with different targeting vectors, bred on different genetic backgrounds, and tested in different laboratory environments, corroborates the negative findings on sociability in oxytocin mutant mice. Intact tendencies to spend time with another mouse versus with a novel object, in both lines of oxytocin knockouts, supports an interpretation that oxytocin plays a highly specific role in social memory, but is not essential for general spontaneous social approach in mice.


Brain Research | 1992

Learning impairment following intracerebral administration of the HIV envelope protein gp120 or a VIP antagonist

John R. Glowa; Leigh V. Panlilio; Douglas E. Brenneman; Illana Gozes; Mati Fridkin; Joanna M. Hill

The external envelope glycoprotein (gp120) of the human immunodeficiency virus (HIV) has been shown to be toxic to neurons in culture. To further investigate the neurological effects of gp120, the involvement of this protein with the acquisition of spatial discrimination was assessed. Both native and recombinant gp120 were administered into the cerebral ventricles of adult rats and performance was evaluated in the Morris swim maze. Gp120 treatment retarded acquisition after daily administration of 12 ng. The specificity of this impairment was demonstrated in that the performance of animals given the same amount of gp160 from recombinant baculovirus was not different from animals given saline. Vasoactive intestinal peptide (VIP) has been shown to block gp120-induced neurotoxicity in culture and a VIP receptor antagonist has displayed toxic properties to neurons in culture. We show here that this antagonist, which competitively inhibits VIP binding and blocks VIP-mediated functions in cell cultures from the CNS, also produced an impairment of performance. This retardation was attenuated by cotreatment with VIP, supporting the specificity of the observed impairment. Thus, gp120 and the VIP antagonist produced similar retardation of spatial discrimination, suggesting that both may impair memory for spatially related stimulus control.


Brain Research | 1993

HIV envelope protein-induced neuronal damage and retardation of behavioral development in rat neonates

Joanna M. Hill; Ronald F. Mervis; Rina Avidor; Terry W. Moody; Douglas E. Brenneman

Cognitive and motor impairment are common symptoms among patients infected with the human immunodeficiency virus (HIV), including children who suffer neurological deficits and are frequently developmentally impaired. The HIV envelope protein, gp120, which has been shown to be toxic to neurons in culture, is shed in abundance by infected cells, and thus may play a significant role in the neuropathology of AIDS. To test this possible mechanism, neonatal rats were injected systemically with purified gp120 and the following consequences were observed: (1) radiolabeled gp120 and toxic fragments thereof were recovered in brain homogenates; (2) dystrophic changes were produced in pyramidal neurons of cerebral cortex; (3) retardation was evident in developmental milestones associated with complex motor behaviors. In parallel studies, co-treatment with peptide T, a gp120-derived peptide having a pentapeptide sequence homologous with vasoactive intestinal peptide, prevented or attenuated the morphological damage and behavioral delays associated with gp120 treatment. These studies suggest that gp120 and gp120-derived toxic fragments may contribute to the neurological and neuropsychiatric impairment related to HIV infection, and that peptide T appears to be effective in preventing gp120-associated neurotoxicity in developing rodents.


Journal of Clinical Investigation | 1994

Severe microcephaly induced by blockade of vasoactive intestinal peptide function in the primitive neuroepithelium of the mouse.

Pierre Gressens; Joanna M. Hill; Bénédicte Paindaveine; Illana Gozes; Mati Fridkin; Douglas E. Brenneman

Vasoactive intestinal peptide (VIP) has potent growth-related actions that influence cell mitosis, neuronal survival, and neurodifferentiation in cell culture. VIP can also produce dramatic growth in postimplantation mouse embryos in vitro, characterized by large increases in cell number. The goal of the present study was to assess the role of VIP on early nervous system development in vivo. Pregnant mice were treated with a specific antagonist to VIP. Prenatal administration of the antagonist early in development (E9-E11) produced severe microcephaly characterized by decreased embryonic brain weight with reduced DNA and protein content. The retardation of growth was disproportionally manifested in the brain compared with the body and was prevented by co-treatment with VIP. Identical treatment with the antagonist later in gestation had no detectable effect on embryonic growth. VIP receptors, which were restricted to the central nervous system during this stage of embryonic development, were increased in the neuroepithelium of antagonist-treated embryos while the number of cells in S-phase was significantly decreased. Thus, VIP regulates brain growth in vivo and inhibition of its action provides new insight into a molecular mechanism for microcephaly.


Peptides | 2003

VIP as a trophic factor in the CNS and cancer cells.

Terry W. Moody; Joanna M. Hill; Robert T. Jensen

The effects of vasoactive intestinal peptide (VIP) on the proliferation of central nervous system (CNS) and cancer cells were investigated. VIP has important actions during CNS development. During neurogenesis, VIP stimulates the proliferation and differentiation of brain neurons. Addition of VIP to embryonic mouse spinal cord cultures increases neuronal survival and activity dependent neurotrophic factor (ADNF) secretion from astroglial cells. VIP is an integrative regulator of brain growth and development during neurogenesis and embryogenesis. Also, VIP causes increased proliferation of human breast and lung cancer cells in vitro. VIP binds with high affinity to cancer cells, elevates the cAMP and increases gene expression of c-fos, c-jun, c-myc and vascular endothelial cell growth factor. The effects of VIP on cancer cells are reversed by VIPhybrid, a synthetic VPAC(1) receptor antagonist. VIPhyb inhibits the basal growth of lung cancer cells in vitro and tumors in vivo and potentiates the ability of chemotherapeutic drugs to kill cancer cells. Due to the high density of VPAC(1) receptors in cancer cells, VIP has been radiolabeled with 123I, 18F and 99mTc to image tumors. It remains to be determined if radiolabeled VIP analogs will be useful agents for early detection of cancer in patients.


Peptides | 1991

Vasoactive intestinal peptide antagonist retards the development of neonatal behaviors in the rat

Joanna M. Hill; Illana Gozes; James L. Hill; Mati Fridkin; Douglas E. Brenneman

Based on the demonstrated neurotrophic activity of VIP in vitro, a recently designed VIP antagonist was used to assess the role of this neuropeptide in the behavioral development of rats. Rats received daily subcutaneous injections from birth to day 14. Observations of developmental milestones/behaviors were made daily for 21 days. Of the measures of behavioral development tested, the time to surface right on day 4 and the day of onset for forelimb placing, hindlimb placing, forelimb grasping and air righting were significantly retarded by the antagonist. Cotreatment with VIP prevented the antagonist-induced delay. These results suggest that VIP activity is important in the development of select complex motor behaviors.


Journal of Clinical Investigation | 1996

Maternal vasoactive intestinal peptide and the regulation of embryonic growth in the rodent.

Joanna M. Hill; Susan K McCune; Ruben Alvero; Gordon W. Glazner; Karin A. Henins; Stephen F. Stanziale; Jessica R. Keimowitz; Douglas E. Brenneman

Vasoactive intestinal peptide (VIP) has been shown to regulate early postimplantation growth in rodents through central nervous system receptors. However, the source of VIP mediating these effects is unknown. Although VIP binding sites are present prenatally, VIP mRNA was not detected in the rat central nervous system before birth and was detected in the periphery only during the last third of pregnancy. In the present study, the embryonic day (E11) rat embryo/trophoblast was shown to have four times the VIP concentration of the E17 fetus and to have VIP receptors in the central nervous system. However, no VIP mRNA was detected in the E11 rat embryo or embryonic membranes by in situ hybridization or reverse transcriptase-PCR. RIA of rat maternal serum revealed a peak in VIP concentration at days E10-E12 of pregnancy, with VIP rising to levels 6-10-fold higher than during the final third of pregnancy. After intravenous administration of radiolabeled VIP to pregnant female mice, undegraded VIP was found in the E10 embryo. These results suggest that maternal tissues may provide neuroendocrine support for embryonic growth through a surge of VIP during early postimplantation development in the rodent.


Journal of Neurochemistry | 2002

Involvement of pituitary adenylate cyclase-activating polypeptide II vasoactive intestinal peptide 2 receptor in mouse neocortical astrocytogenesis.

V Zupan; Joanna M. Hill; Douglas E. Brenneman; Illana Gozes; Mati Fridkin; Patrick Robberecht; Philippe Evrard; Pierre Gressens

Abstract: At the end of neuronal migration, the neopallial germinative zone produces glial cells destined to colonize the upper layers of neocortex. High densities of binding sites for vasoactive intestinal peptide (VIP) have been found in the rodent germinative zone just after completion of neuronal migration, suggesting a possible role of VIP in neocortical astrocytogenesis. In the present study, administration of a VIP antagonist at embryonic days 17 and 18 to pregnant mice was followed by a dramatic depletion of astrocytes in the upper cortical layer of the offspring. The depletion of astrocytes was dose‐dependent, with a 42% reduction in the density of astrocytes observed with 50 µg of antagonist. The antagonist effect was reversed by cotreatment with VIP or pituitary adenylate cyclase‐activating polypeptide (PACAP), suggesting the involvement of a receptor common to these two neuropeptides. VIP antagonist‐induced inhibition of astrocytogenesis was also blocked by Ro 25‐1553, a long‐acting cyclic VIP analogue selective for the PACAP II VIP2 receptor subclass. Our results demonstrate that VIP and/or PACAP play a crucial physiological role in neocortical astrocytogenesis, possibly through interaction with PACAP II VIP2 receptors.


The Journal of Comparative Neurology | 1997

Sites of gene expression for vasoactive intestinal polypeptide throughout the brain of the chick (Gallus domesticus)

Wayne J. Kuenzel; Susan K. McCune; Richard Talbot; Peter J. Sharp; Joanna M. Hill

The peptide neurotransmitter vasoactive intestinal polypeptide (VIP) has several important functions in vertebrates, particularly, influencing the neuroendocrine and autonomic nervous systems both in developing and in adult animals. To document potential brain areas that might play significant functional roles, the distribution of VIP mRNA was examined throughout the entire chick brain by using in situ hybridization histochemistry (ISHH). In addition, a VIP binding‐site study was completed that focused on the lateral septal organ (LSO), a circumventricular organ of potential significance in avian species. The areas where VIP message was found included the olfactory bulbs, posterior hippocampus, parahippocampal area, hyperstriatum, archistriatum/nucleus (n.) taenia (amygdala), medial part of the LSO, organum vasculosum of the lamina terminalis, medial preoptic region, bed n. of the pallial commissure, anterior hypothalamic (hypo.) n., lateral hypo. area (most extensive and dense message), periventricular hypo. n., lateral to the paraventricular n., ventromedial hypo. n., stratum cellulare externum, inferior hypo. n., infundibular hypo. n., median eminence, three layers within the stratum griseum et fibrosum superficiale, area ventralis of Tsai, n. tegmenti pedunculopontinus pars compacta (substantia nigra), intercollicular n., central gray, locus ceruleus, parabrachial n., ventrolateral medulla, reticular pontine area, in and about the n. vestibularis descendens. When compared with immunocytochemistry that detected the presence of the peptide product VIP, more areas of the brain were found to contain perikarya expressing VIP by using ISHH, particularly in the telencephalon and the mesencephalon. VIP binding sites were found in the lateral portion of the LSO where the blood‐brain barrier is not fully developed. Hence, the LSO was found to contain neural elements that synthesize as well as bind VIP. VIP appears to be a useful peptide for defining major components of the visceral forebrain system in birds. J. Comp. Neurol. 381:101‐118, 1997.


Neuropeptides | 2003

Complex array of cytokines released by vasoactive intestinal peptide

Douglas E. Brenneman; Terry M. Phillips; Janet Hauser; Joanna M. Hill; Catherine Y. Spong; Illana Gozes

A complex mixture of five cytokines has been shown to be released by vasoactive intestinal peptide (VIP). Cytokines were measured in paired samples of culture medium and astroglial cytosol by capillary electrophoresis. This is the first description of VIP-mediated release for TNF-alpha, IL-3, G-CSF and M-CSF from astrocyte cultures. Kinetic studies after VIP treatment demonstrated a gradual but incomplete depletion of cytosolic cytokine levels, with differences observed among the cytokines. Significant increases in release were apparent within 15-30 min for all cytokines. As the recognized VIP receptors (VPAC1 and VPAC2) are linked to adenylate cyclase and also interact with pituitary adenylate cyclase activating polypeptide-38 (PACAP-38), both this homologous peptide and 8-bromo cAMP were investigated and compared to VIP-mediated release. Treatment with 1 mM 8-bromo cAMP produced cytokine release similar in amount to 0.1 nM PACAP-38, but significantly less (<50%) in comparison to 0.1 nM VIP. PACAP-38 and VIP exhibited similar EC(50)s for the release of G-CSF and TNF-alpha; however, the maximal release was 4-6 times greater for VIP than for PACAP-38. This similarity in potency suggested a VPAC-like receptor; however, the greater efficacy for VIP in comparison to PACAP-38, combined with a lack of cAMP production at subnanomolar concentrations of VIP, suggested a mechanism not currently associated with VPAC receptors. For M-CSF, IL-3 and IL-6, the EC(50)s of VIP were 3-30 times more potent than those of PACAP-38 in producing release. These studies suggested that multiple mechanisms mediate cytokine release in astrocytes: (1) a low efficacy release produced by PACAP-38 that is cAMP-mediated and (2) a high efficacy, VIP-preferring mechanism that was not linked to cAMP. In summary, subnanomolar concentrations of VIP released a complex array of cytokines from astrocytes that may contribute to the mitogenic and neurotrophic properties of this neuropeptide in the central nervous system.

Collaboration


Dive into the Joanna M. Hill's collaboration.

Top Co-Authors

Avatar

Douglas E. Brenneman

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susan K McCune

Children's National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Candace B. Pert

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Daniel Abebe

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Catherine Y. Spong

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Mati Fridkin

Weizmann Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Janet Hauser

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maxine A. Lesniak

National Institutes of Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge