Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joanna M. M. Howson is active.

Publication


Featured researches published by Joanna M. M. Howson.


Nature Genetics | 2007

Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes

John A. Todd; Neil M Walker; Jason D. Cooper; Deborah J. Smyth; Kate Downes; Vincent Plagnol; Rebecca Bailey; Sergey Nejentsev; Sarah Field; Felicity Payne; Christopher E. Lowe; Jeffrey S. Szeszko; Jason P. Hafler; Lauren Zeitels; Jennie H. M. Yang; Adrian Vella; Sarah Nutland; Helen Stevens; Helen Schuilenburg; Gillian Coleman; Meeta Maisuria; William Meadows; Luc J. Smink; Barry Healy; Oliver Burren; Alex C. Lam; Nigel R Ovington; James E Allen; Ellen C. Adlem; Hin-Tak Leung

The Wellcome Trust Case Control Consortium (WTCCC) primary genome-wide association (GWA) scan on seven diseases, including the multifactorial autoimmune disease type 1 diabetes (T1D), shows associations at P < 5 × 10−7 between T1D and six chromosome regions: 12q24, 12q13, 16p13, 18p11, 12p13 and 4q27. Here, we attempted to validate these and six other top findings in 4,000 individuals with T1D, 5,000 controls and 2,997 family trios independent of the WTCCC study. We confirmed unequivocally the associations of 12q24, 12q13, 16p13 and 18p11 (Pfollow-up ≤ 1.35 × 10−9; Poverall ≤ 1.15 × 10−14), leaving eight regions with small effects or false-positive associations. We also obtained evidence for chromosome 18q22 (Poverall = 1.38 × 10−8) from a GWA study of nonsynonymous SNPs. Several regions, including 18q22 and 18p11, showed association with autoimmune thyroid disease. This study increases the number of T1D loci with compelling evidence from six to at least ten.


The New England Journal of Medicine | 2008

Shared and Distinct Genetic Variants in Type 1 Diabetes and Celiac Disease

Deborah J. Smyth; Vincent Plagnol; Neil M Walker; Jason D. Cooper; Kate Downes; Jennie H. M. Yang; Joanna M. M. Howson; Helen Stevens; Ross McManus; Cisca Wijmenga; Graham A. Heap; P Dubois; David G. Clayton; Karen A. Hunt; David A. van Heel; John A. Todd

BACKGROUND Two inflammatory disorders, type 1 diabetes and celiac disease, cosegregate in populations, suggesting a common genetic origin. Since both diseases are associated with the HLA class II genes on chromosome 6p21, we tested whether non-HLA loci are shared. METHODS We evaluated the association between type 1 diabetes and eight loci related to the risk of celiac disease by genotyping and statistical analyses of DNA samples from 8064 patients with type 1 diabetes, 9339 control subjects, and 2828 families providing 3064 parent-child trios (consisting of an affected child and both biologic parents). We also investigated 18 loci associated with type 1 diabetes in 2560 patients with celiac disease and 9339 control subjects. RESULTS Three celiac disease loci--RGS1 on chromosome 1q31, IL18RAP on chromosome 2q12, and TAGAP on chromosome 6q25--were associated with type 1 diabetes (P<1.00x10(-4)). The 32-bp insertion-deletion variant on chromosome 3p21 was newly identified as a type 1 diabetes locus (P=1.81x10(-8)) and was also associated with celiac disease, along with PTPN2 on chromosome 18p11 and CTLA4 on chromosome 2q33, bringing the total number of loci with evidence of a shared association to seven, including SH2B3 on chromosome 12q24. The effects of the IL18RAP and TAGAP alleles confer protection in type 1 diabetes and susceptibility in celiac disease. Loci with distinct effects in the two diseases included INS on chromosome 11p15, IL2RA on chromosome 10p15, and PTPN22 on chromosome 1p13 in type 1 diabetes and IL12A on 3q25 and LPP on 3q28 in celiac disease. CONCLUSIONS A genetic susceptibility to both type 1 diabetes and celiac disease shares common alleles. These data suggest that common biologic mechanisms, such as autoimmunity-related tissue damage and intolerance to dietary antigens, may be etiologic features of both diseases.


Nature Genetics | 2005

Population structure, differential bias and genomic control in a large-scale, case-control association study

David G. Clayton; Neil M Walker; Deborah J. Smyth; Rebecca Pask; Jason D. Cooper; Lisa M. Maier; Luc J. Smink; Alex C. Lam; Nigel R Ovington; Helen Stevens; Sarah Nutland; Joanna M. M. Howson; Malek Faham; Martin Moorhead; Hywel B. Jones; Matthew Falkowski; Paul Hardenbol; Thomas D. Willis; John A. Todd

The main problems in drawing causal inferences from epidemiological case-control studies are confounding by unmeasured extraneous factors, selection bias and differential misclassification of exposure. In genetics the first of these, in the form of population structure, has dominated recent debate. Population structure explained part of the significant +11.2% inflation of test statistics we observed in an analysis of 6,322 nonsynonymous SNPs in 816 cases of type 1 diabetes and 877 population-based controls from Great Britain. The remainder of the inflation resulted from differential bias in genotype scoring between case and control DNA samples, which originated from two laboratories, causing false-positive associations. To avoid excluding SNPs and losing valuable information, we extended the genomic control method by applying a variable downweighting to each SNP.


Nature | 2007

Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A

Sergey Nejentsev; Joanna M. M. Howson; Neil Walker; Jeffrey S. Szeszko; Sarah Field; Helen Stevens; Reynolds P; Matthew Hardy; Emma King; Jennifer Masters; John S. Hulme; Lisa M. Maier; Deborah J. Smyth; Rebecca Bailey; Jason D. Cooper; Ribas G; Campbell Rd; David G. Clayton; John A. Todd

The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1–3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region. Owing to the region’s extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods—recursive partitioning and regression—to pinpoint disease susceptibility to the MHC class I genes HLA-B and HLA-A (risk ratios >1.5; Pcombined = 2.01 × 10-19 and 2.35 × 10-13, respectively) in addition to the established associations of the MHC class II genes. Other loci with smaller and/or rarer effects might also be involved, but to find these, future searches must take into account both the HLA class II and class I genes and use even larger samples. Taken together with previous studies, we conclude that MHC-class-I-mediated events, principally involving HLA-B*39, contribute to the aetiology of type 1 diabetes.


Genes and Immunity | 2009

Analysis of 17 autoimmune disease-associated variants in type 1 diabetes identifies 6q23/ TNFAIP3 as a susceptibility locus

Erik Fung; Deborah J. Smyth; Joanna M. M. Howson; Jason D. Cooper; Neil Walker; Helen Stevens; Linda S. Wicker; John A. Todd

As a result of genome-wide association studies in larger sample sets, there has been an increase in identifying genes that influence susceptibility to individual immune-mediated diseases, as well as evidence that some genes are associated with more than one disease. In this study, we tested 17 single nucleotide polymorphisms (SNP) from 16 gene regions that have been reported in several autoimmune diseases including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), multiple sclerosis (MS), ankylosing spondylitis (AS) and Crohns disease (CD) to determine whether the variants are also associated with type 1 diabetes (T1D). In up to 8010 cases and 9733 controls we found some evidence for an association with T1D in the regions containing genes: 2q32/STAT4, 17q21/STAT3, 5p15/ERAP1 (ARTS1), 6q23/TNFAIP3 and 12q13/KIF5A/PIP4K2C with allelic P-values ranging from 3.70 × 10−3 to 3.20 × 10−5. These findings extend our knowledge of susceptibility locus sharing across different autoimmune diseases, and provide convincing evidence that the RA/SLE locus 6q23/TNFAIP3 is a newly identified T1D locus.


Genes and Immunity | 2009

CD226 Gly307Ser association with multiple autoimmune diseases

Jason P. Hafler; Lisa M. Maier; Jason D. Cooper; Vincent Plagnol; Anne Hinks; Matthew J. Simmonds; Helen Stevens; Neil Walker; Barry Healy; Joanna M. M. Howson; M Maisuria; Simon Duley; Gillian Coleman; S. C. L. Gough; Jane Worthington; Vijay K. Kuchroo; Linda S. Wicker; John A. Todd

Genome-wide association studies provide insight into multigenic diseases through the identification of susceptibility genes and etiological pathways. In addition, the identification of shared variants among autoimmune disorders provides insight into common disease pathways. We previously reported an association of a nonsynonymous single nucleotide polymorphism (SNP) rs763361/Gly307Ser in the immune response gene CD226 on chromosome 18q22 with type 1 diabetes (T1D) susceptibility. Here, we report efforts toward identifying the causal variant by exonic resequencing and tag SNP mapping of the 18q22 region in both T1D and multiple sclerosis (MS). In addition to the analysis of newly available samples in T1D (2088 cases and 3289 controls) and autoimmune thyroid disease (AITD) (821 cases and 1920 controls), resulting in strong support for the Ser307 association with T1D (P=3.46 × 10−9) and continued potential evidence for AITD (P=0.0345), we provide evidence for association of Gly307Ser with MS (P=4.20 × 10−4) and rheumatoid arthritis (RA) (P=0.017). The Ser307 allele of rs763361 in exon 7 of CD226 predisposes to T1D, MS, and possibly AITD and RA, and based on the tag SNP analysis, could be the causal variant.


Science | 2016

Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease

Paolo Zanoni; Sumeet A. Khetarpal; Daniel B. Larach; William F. Hancock-Cerutti; John S. Millar; Marina Cuchel; Anatol Kontush; Praveen Surendran; Danish Saleheen; Stella Trompet; J.W. Jukema; De Craen A; Panos Deloukas; Naveed Sattar; Ian Ford; Chris J. Packard; Majumder Aa; Dewan S. Alam; Di Angelantonio E; Gonçalo R. Abecasis; Rajiv Chowdhury; Jeanette Erdmann; Børge G. Nordestgaard; Sune F. Nielsen; Anne Tybjærg-Hansen; Schmidt Rf; Kari Kuulasmaa; Dajiang J. Liu; Markus Perola; Stefan Blankenberg

A scavenger that protects the heart Coronary heart disease is a tale of two forms of plasma cholesterol. In contrast to the well-established effects of “bad” cholesterol (LDL-C), the role of “good” cholesterol (HDL-C) is mysterious. Elevated HDL-C correlates with a lower risk of heart disease, yet drugs that raise HDL-C levels do not reduce risk. Zanoni et al. found that some people with exceptionally high levels of HDL-C carry a rare sequence variant in the gene encoding the major HDL-C receptor, scavenger receptor BI. This variant destroys the receptors ability to take up HDL-C. Interestingly, people with this variant have a higher risk of heart disease despite having high levels of HDL-C. Science, this issue p. 1166 A human genetics study sheds light on how HDL (good) cholesterol protects against cardiovascular disease. Scavenger receptor BI (SR-BI) is the major receptor for high-density lipoprotein (HDL) cholesterol (HDL-C). In humans, high amounts of HDL-C in plasma are associated with a lower risk of coronary heart disease (CHD). Mice that have depleted Scarb1 (SR-BI knockout mice) have markedly elevated HDL-C levels but, paradoxically, increased atherosclerosis. The impact of SR-BI on HDL metabolism and CHD risk in humans remains unclear. Through targeted sequencing of coding regions of lipid-modifying genes in 328 individuals with extremely high plasma HDL-C levels, we identified a homozygote for a loss-of-function variant, in which leucine replaces proline 376 (P376L), in SCARB1, the gene encoding SR-BI. The P376L variant impairs posttranslational processing of SR-BI and abrogates selective HDL cholesterol uptake in transfected cells, in hepatocyte-like cells derived from induced pluripotent stem cells from the homozygous subject, and in mice. Large population-based studies revealed that subjects who are heterozygous carriers of the P376L variant have significantly increased levels of plasma HDL-C. P376L carriers have a profound HDL-related phenotype and an increased risk of CHD (odds ratio = 1.79, which is statistically significant).


The Journal of Infectious Diseases | 2002

Interleukin-10, Polymorphism in SLC11A1 (formerly NRAMP1), and Susceptibility to Tuberculosis

Agnes A. Awomoyi; Arnaud Marchant; Joanna M. M. Howson; Keith P. W. J. McAdam; Jenefer M. Blackwell; Melanie J. Newport

Host genetic factors are major determinants of susceptibility to tuberculosis, and an understanding of the molecular basis of this observation has major implications for the development of novel therapies and vaccines. Slc11a1 (formerly Nramp1), the first murine infection susceptibility locus identified, regulates early innate responses to intracellular pathogens. Variation in the human homologue SLC11A1 is associated with and linked to tuberculosis in genetically different populations. In a case-control study of 329 tuberculosis case patients and 324 control subjects, the association between allele 2 of a functional SLC11A1 polymorphism and tuberculosis has been reproduced. This variant is associated with higher lipopolysaccharide-induced production of the macrophage-deactivating cytokine interleukin-10. Furthermore, monocytes from persons who develop tuberculosis innately produce more interleukin-10 than do monocytes from healthy control subjects. These data therefore confirm the importance of SLC11A1 in tuberculosis susceptibility in humans and suggest that SLC11A1 influences tuberculosis susceptibility by regulation of interleukin-10.


Genes and Immunity | 2004

Evidence for a cluster of genes on chromosome 17q11–q21 controlling susceptibility to tuberculosis and leprosy in Brazilians

Sarra E. Jamieson; E.N. Miller; G F Black; Christopher S. Peacock; Heather J. Cordell; Joanna M. M. Howson; M-A Shaw; D Burgner; W Xu; Z. Lins-Lainson; Jeffrey J. Shaw; F. Ramos; Fernando Tobias Silveira; Jenefer M. Blackwell

The region of conserved synteny on mouse chromosome 11/human 17q11–q21 is known to carry a susceptibility gene(s) for intramacrophage pathogens. The region is rich in candidates including NOS2A, CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1β, CCL5/RANTES, CCR7, STAT3 and STAT5A/5B. To examine the region in man, we studied 92 multicase tuberculosis (627 individuals) and 72 multicase leprosy (372 individuals) families from Brazil. Multipoint nonparametric analysis (ALLEGRO) using 16 microsatellites shows two peaks of linkage for leprosy at D17S250 (Zlr score 2.34; P=0.01) and D17S1795 (Zlr 2.67; P=0.004) and a single peak for tuberculosis at D17S250 (Zlr 2.04; P=0.02). Combined analysis shows significant linkage (peak Zlr 3.38) at D17S250, equivalent to an allele sharing LOD score 2.48 (P=0.0004). To determine whether one or multiple genes contribute, 49 informative single nucleotide polymorphisms were typed in candidate genes. Family-based allelic association testing that was robust to family clustering demonstrated significant associations with tuberculosis susceptibility at four loci separated by intervals (NOS2A–8.4 Mb–CCL18–32.3 kb–CCL4–6.04 Mb–STAT5B) up to several Mb. Stepwise conditional logistic regression analysis using a case/pseudo-control data set showed that the four genes contributed separate main effects, consistent with a cluster of susceptibility genes across 17q11.2.


American Journal of Human Genetics | 2005

Regression Mapping of Association between the Human Leukocyte Antigen Region and Graves Disease

Matthew J. Simmonds; Joanna M. M. Howson; Joanne M. Heward; Heather J. Cordell; Helen Foxall; Jackie Carr-Smith; Sarah M. Gibson; Neil M Walker; Yaron Tomer; Jayne A. Franklyn; John A. Todd; S. C. L. Gough

The human leukocyte antigen class II genes DRB1, DQB1, and DQA1 are associated with Graves disease (GD), but, because of strong linkage disequilibrium within this region, the primary etiological variant(s) remains unknown. In the present study, 871 patients with GD and 621 control subjects were genotyped at the DRB1, DQB1, and DQA1 loci. All three loci were associated with GD (P=1.45 x 10(-12), P=3.20 x 10(-5), and P=9.26 x 10(-12), respectively). Stepwise logistic-regression analysis showed that the association could be explained by either DRB1 or DQA1 but not by DQB1. To extend previous results, the amino acid sequence of the exon 2-encoded peptide-binding domain of DRB1 was predicted for each subject, and, by use of logistic regression, each position was analyzed for association with GD. Of 102 amino acids, 70 were uninformative; of the remaining 32 amino acids, 13 were associated with GD (P values ranged from 2.20 x 10(-4) to 1.2 x 10(-12)). The strongest association was at position beta 74. This analysis is consistent with the possibility that position beta 74 of exon 2 of the DRB1 molecule may have a specific and central role in autoantigen presentation by DRB1 to T lymphocytes. However, we cannot yet exclude a primary role for DQA1 or for other polymorphisms that affect DRB1 function or expression.

Collaboration


Dive into the Joanna M. M. Howson's collaboration.

Top Co-Authors

Avatar

John A. Todd

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lisa M. Maier

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge