Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joanna M. Wardlaw is active.

Publication


Featured researches published by Joanna M. Wardlaw.


Lancet Neurology | 2013

Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration

Joanna M. Wardlaw; Eric E. Smith; Geert Jan Biessels; Charlotte Cordonnier; Franz Fazekas; Richard Frayne; Richard Lindley; John T. O'Brien; Frederik Barkhof; Oscar Benavente; Sandra E. Black; Carol Brayne; Monique M.B. Breteler; Hugues Chabriat; Charles DeCarli; Frank Erik De Leeuw; Fergus N. Doubal; Marco Duering; Nick C. Fox; Steven M. Greenberg; Vladimir Hachinski; Ingo Kilimann; Vincent Mok; Robert J. van Oostenbrugge; Leonardo Pantoni; Oliver Speck; Blossom C. M. Stephan; Stefan J. Teipel; Anand Viswanathan; David J. Werring

Summary Cerebral small vessel disease (SVD) is a common accompaniment of ageing. Features seen on neuroimaging include recent small subcortical infarcts, lacunes, white matter hyperintensities, perivascular spaces, microbleeds, and brain atrophy. SVD can present as a stroke or cognitive decline, or can have few or no symptoms. SVD frequently coexists with neurodegenerative disease, and can exacerbate cognitive deficits, physical disabilities, and other symptoms of neurodegeneration. Terminology and definitions for imaging the features of SVD vary widely, which is also true for protocols for image acquisition and image analysis. This lack of consistency hampers progress in identifying the contribution of SVD to the pathophysiology and clinical features of common neurodegenerative diseases. We are an international working group from the Centres of Excellence in Neurodegeneration. We completed a structured process to develop definitions and imaging standards for markers and consequences of SVD. We aimed to achieve the following: first, to provide a common advisory about terms and definitions for features visible on MRI; second, to suggest minimum standards for image acquisition and analysis; third, to agree on standards for scientific reporting of changes related to SVD on neuroimaging; and fourth, to review emerging imaging methods for detection and quantification of preclinical manifestations of SVD. Our findings and recommendations apply to research studies, and can be used in the clinical setting to standardise image interpretation, acquisition, and reporting. This Position Paper summarises the main outcomes of this international effort to provide the STandards for ReportIng Vascular changes on nEuroimaging (STRIVE).


The Lancet | 2014

Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials

Jonathan Emberson; Kennedy R. Lees; Patrick D. Lyden; L Blackwell; Gregory W. Albers; Erich Bluhmki; Thomas G. Brott; Geoff Cohen; Stephen M. Davis; Geoffrey A. Donnan; James C. Grotta; George Howard; Markku Kaste; Masatoshi Koga; Ruediger von Kummer; Maarten G. Lansberg; Richard Lindley; Gordon Murray; Jean Marc Olivot; Mark W. Parsons; Barbara C. Tilley; Danilo Toni; Kazunori Toyoda; Nils Wahlgren; Joanna M. Wardlaw; William Whiteley; Gregory J. del Zoppo; Colin Baigent; Peter Sandercock; Werner Hacke

Summary Background Alteplase is effective for treatment of acute ischaemic stroke but debate continues about its use after longer times since stroke onset, in older patients, and among patients who have had the least or most severe strokes. We assessed the role of these factors in affecting good stroke outcome in patients given alteplase. Methods We did a pre-specified meta-analysis of individual patient data from 6756 patients in nine randomised trials comparing alteplase with placebo or open control. We included all completed randomised phase 3 trials of intravenous alteplase for treatment of acute ischaemic stroke for which data were available. Retrospective checks confirmed that no eligible trials had been omitted. We defined a good stroke outcome as no significant disability at 3–6 months, defined by a modified Rankin Score of 0 or 1. Additional outcomes included symptomatic intracranial haemorrhage (defined by type 2 parenchymal haemorrhage within 7 days and, separately, by the SITS-MOST definition of parenchymal type 2 haemorrhage within 36 h), fatal intracranial haemorrhage within 7 days, and 90-day mortality. Findings Alteplase increased the odds of a good stroke outcome, with earlier treatment associated with bigger proportional benefit. Treatment within 3·0 h resulted in a good outcome for 259 (32·9%) of 787 patients who received alteplase versus 176 (23·1%) of 762 who received control (OR 1·75, 95% CI 1·35–2·27); delay of greater than 3·0 h, up to 4·5 h, resulted in good outcome for 485 (35·3%) of 1375 versus 432 (30·1%) of 1437 (OR 1·26, 95% CI 1·05–1·51); and delay of more than 4·5 h resulted in good outcome for 401 (32·6%) of 1229 versus 357 (30·6%) of 1166 (OR 1·15, 95% CI 0·95–1·40). Proportional treatment benefits were similar irrespective of age or stroke severity. Alteplase significantly increased the odds of symptomatic intracranial haemorrhage (type 2 parenchymal haemorrhage definition 231 [6·8%] of 3391 vs 44 [1·3%] of 3365, OR 5·55, 95% CI 4·01–7·70, p<0·0001; SITS-MOST definition 124 [3·7%] vs 19 [0·6%], OR 6·67, 95% CI 4·11–10·84, p<0·0001) and of fatal intracranial haemorrhage within 7 days (91 [2·7%] vs 13 [0·4%]; OR 7·14, 95% CI 3·98–12·79, p<0·0001). The relative increase in fatal intracranial haemorrhage from alteplase was similar irrespective of treatment delay, age, or stroke severity, but the absolute excess risk attributable to alteplase was bigger among patients who had more severe strokes. There was no excess in other early causes of death and no significant effect on later causes of death. Consequently, mortality at 90 days was 608 (17·9%) in the alteplase group versus 556 (16·5%) in the control group (hazard ratio 1·11, 95% CI 0·99–1·25, p=0·07). Taken together, therefore, despite an average absolute increased risk of early death from intracranial haemorrhage of about 2%, by 3–6 months this risk was offset by an average absolute increase in disability-free survival of about 10% for patients treated within 3·0 h and about 5% for patients treated after 3·0 h, up to 4·5 h. Interpretation Irrespective of age or stroke severity, and despite an increased risk of fatal intracranial haemorrhage during the first few days after treatment, alteplase significantly improves the overall odds of a good stroke outcome when delivered within 4·5 h of stroke onset, with earlier treatment associated with bigger proportional benefits. Funding UK Medical Research Council, British Heart Foundation, University of Glasgow, University of Edinburgh.


The Lancet | 2012

Recombinant tissue plasminogen activator for acute ischaemic stroke: an updated systematic review and meta-analysis

Joanna M. Wardlaw; Veronica Murray; Eivind Berge; Gregory J. del Zoppo; Peter Sandercock; Richard L Lindley; Geoff Cohen

Summary Background Recombinant tissue plasminogen activator (rt-PA, alteplase) improved functional outcome in patients treated soon after acute ischaemic stroke in randomised trials, but licensing is restrictive and use varies widely. The IST-3 trial adds substantial new data. We therefore assessed all the evidence from randomised trials for rt-PA in acute ischaemic stroke in an updated systematic review and meta-analysis. Methods We searched for randomised trials of intravenous rt-PA versus control given within 6 h of onset of acute ischaemic stroke up to March 30, 2012. We estimated summary odds ratios (ORs) and 95% CI in the primary analysis for prespecified outcomes within 7 days and at the final follow-up of all patients treated up to 6 h after stroke. Findings In up to 12 trials (7012 patients), rt-PA given within 6 h of stroke significantly increased the odds of being alive and independent (modified Rankin Scale, mRS 0–2) at final follow-up (1611/3483 [46·3%] vs 1434/3404 [42·1%], OR 1·17, 95% CI 1·06–1·29; p=0·001), absolute increase of 42 (19–66) per 1000 people treated, and favourable outcome (mRS 0–1) absolute increase of 55 (95% CI 33–77) per 1000. The benefit of rt-PA was greatest in patients treated within 3 h (mRS 0–2, 365/896 [40·7%] vs 280/883 [31·7%], 1·53, 1·26–1·86, p<0·0001), absolute benefit of 90 (46–135) per 1000 people treated, and mRS 0–1 (283/896 [31·6%] vs 202/883 [22·9%], 1·61, 1·30–1·90; p<0·0001), absolute benefit 87 (46–128) per 1000 treated. Numbers of deaths within 7 days were increased (250/2807 [8·9%] vs 174/2728 [6·4%], 1·44, 1·18–1·76; p=0·0003), but by final follow-up the excess was no longer significant (679/3548 [19·1%] vs 640/3464 [18·5%], 1·06, 0·94–1·20; p=0·33). Symptomatic intracranial haemorrhage (272/3548 [7·7%] vs 63/3463 [1·8%], 3·72, 2·98–4·64; p<0·0001) accounted for most of the early excess deaths. Patients older than 80 years achieved similar benefit to those aged 80 years or younger, particularly when treated early. Interpretation The evidence indicates that intravenous rt-PA increased the proportion of patients who were alive with favourable outcome and alive and independent at final follow-up. The data strengthen previous evidence to treat patients as early as possible after acute ischaemic stroke, although some patients might benefit up to 6 h after stroke. Funding UK Medical Research Council, Stroke Association, University of Edinburgh, National Health Service Health Technology Assessment Programme, Swedish Heart-Lung Fund, AFA Insurances Stockholm (Arbetsmarknadens Partners Forsakringsbolag), Karolinska Institute, Marianne and Marcus Wallenberg Foundation, Research Council of Norway, Oslo University Hospital.


Lancet Neurology | 2013

Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging

Joanna M. Wardlaw; Colin Smith; Martin Dichgans

The term cerebral small vessel disease (SVD) describes a range of neuroimaging, pathological, and associated clinical features. Clinical features range from none, to discrete focal neurological symptoms (eg, stroke), to insidious global neurological dysfunction and dementia. The burden on public health is substantial. The pathogenesis of SVD is largely unknown. Although the pathological processes leading to the arteriolar disease are associated with vascular risk factors and are believed to result from an intrinsic cerebral arteriolar occlusive disease, little is known about how these processes result in brain disease, how SVD lesions contribute to neurological or cognitive symptoms, and the association with risk factors. Pathology often shows end-stage disease, which makes identification of the earliest stages difficult. Neuroimaging provides considerable insights; although the small vessels are not easily seen themselves, the effects of their malfunction on the brain can be tracked with detailed brain imaging. We discuss potential mechanisms, detectable with neuroimaging, that might better fit the available evidence and provide testable hypotheses for future study.


Stroke | 2003

Is Breakdown of the Blood-Brain Barrier Responsible for Lacunar Stroke, Leukoaraiosis, and Dementia?

Joanna M. Wardlaw; Peter Sandercock; Martin Dennis

Background— The pathogenesis of and relationship between small deep (lacunar) infarcts, cerebral white matter disease (leukoaraiosis or white matter hyperintensities), and progressive cognitive impairment or dementia are much debated. Summary of Comment— We hypothesize that cerebral small-vessel endothelial (ie, blood-brain barrier) dysfunction, with leakage of plasma components into the vessel wall and surrounding brain tissue leading to neuronal damage, may contribute to the development of 3 overlapping and disabling cerebrovascular conditions: lacunar stroke, leukoaraiosis, and dementia. This hypothesis could explain the link between ischemic cerebral small-vessel disease and several apparently clinically distinct dementia syndromes. This hypothesis is supported by pathological, epidemiological, and experimental studies in lacunar stroke and leukoaraiosis and observations on the blood-brain barrier with MRI. We suspect that the potential significance of blood-brain barrier failure as a pathogenetic step linking vascular disease with common, disabling brain diseases of insidious onset has been overlooked. For example, lipohyalinosis, which has a pathological appearance of uncertain origin and is possibly responsible for some discrete lacunar infarcts, may be one end of a clinical spectrum of illness manifested by blood-brain barrier failure. Conclusions— Proof that blood-brain barrier failure is key to these conditions could provide a target for new treatments to reduce the effects of vascular disease on the brain and prevent cognitive decline and dementia.


BMJ | 2009

Incidental findings on brain magnetic resonance imaging: systematic review and meta-analysis

Zoe Morris; William Whiteley; W. T. Longstreth; Frank Weber; Yi-Chung Lee; Yoshito Tsushima; Hannah H. Alphs; Susanne C. Ladd; Charles Warlow; Joanna M. Wardlaw; Rustam Al-Shahi Salman

Objective To quantify the prevalence of incidental findings on magnetic resonance imaging (MRI) of the brain. Design Systematic review and meta-analysis of observational studies. Data sources Ovid Medline (1950 to May 2008), Embase (1980 to May 2008), and bibliographies of relevant articles. Review methods Two reviewers sought and assessed studies of people without neurological symptoms who underwent MRI of the brain with or without intravenous contrast for research purposes or for occupational, clinical, or commercial screening. Main outcome measures Overall disease specific and age specific prevalence of incidental brain findings, calculated by meta-analysis of pooled proportions using DerSimonian-Laird weights in a random effects model. Results In 16 studies, 135 of 19 559 people had neoplastic incidental brain findings (prevalence 0.70%, 95% confidence interval 0.47% to 0.98%), and prevalence increased with age (χ2 for linear trend, P=0.003). In 15 studies, 375 of 15 559 people had non-neoplastic incidental brain findings (prevalence 2.0%, 1.1% to 3.1%, excluding white matter hyperintensities, silent infarcts, and microbleeds). The number of asymptomatic people needed to scan to detect any incidental brain finding was 37. The prevalence of incidental brain findings was higher in studies using high resolution MRI sequences than in those using standard resolution sequences (4.3% v 1.7%, P<0.001). The prevalence of neoplastic incidental brain findings increased with age. Conclusions Incidental findings on brain MRI are common, prevalence increases with age, and detection is more likely using high resolution MRI sequences than standard resolution sequences. These findings deserve to be mentioned when obtaining informed consent for brain MRI in research and clinical practice but are not sufficient to justify screening healthy asymptomatic people.


Stroke | 2013

Recommendations on Angiographic Revascularization Grading Standards for Acute Ischemic Stroke A Consensus Statement

Osama O. Zaidat; Albert J. Yoo; Pooja Khatri; Thomas A. Tomsick; Rüdiger von Kummer; Jeffrey L. Saver; Michael P. Marks; Shyam Prabhakaran; David F. Kallmes; Brian-Fred Fitzsimmons; J Mocco; Joanna M. Wardlaw; Stanley L. Barnwell; Tudor G. Jovin; Italo Linfante; Adnan H. Siddiqui; Michael J. Alexander; Joshua A. Hirsch; Max Wintermark; Gregory W. Albers; Henry H. Woo; Donald Heck; Michael H. Lev; Richard I. Aviv; Werner Hacke; Steven Warach; Joseph P. Broderick; Colin P. Derdeyn; Anthony J. Furlan; Raul G. Nogueira

See related article, p 2509 Intra-arterial therapy (IAT) for acute ischemic stroke (AIS) has dramatically evolved during the past decade to include aspiration and stent-retriever devices. Recent randomized controlled trials have demonstrated the superior revascularization efficacy of stent-retrievers compared with the first-generation Merci device.1,2 Additionally, the Diffusion and Perfusion Imaging Evaluation for Understanding Stroke Evolution (DEFUSE) 2, the Mechanical Retrieval and Recanalization of Stroke Clots Using Embolectomy (MR RESCUE), and the Interventional Management of Stroke (IMS) III trials have confirmed the importance of early revascularization for achieving better clinical outcome.3–5 Despite these data, the current heterogeneity in cerebral angiographic revascularization grading (CARG) poses a major obstacle to further advances in stroke therapy. To date, several CARG scales have been used to measure the success of IAT.6–14 Even when the same scale is used in different studies, it is applied using varying operational criteria, which further confounds the interpretation of this key metric.10 The lack of a uniform grading approach limits comparison of revascularization rates across clinical trials and hinders the translation of promising, early phase angiographic results into proven, clinically effective treatments.6–14 For these reasons, it is critical that CARG scales be standardized and end points for successful revascularization be refined.6 This will lead to a greater understanding of the aspects of revascularization that are strongly predictive of clinical response. The optimal grading scale must demonstrate (1) a strong correlation with clinical outcome, (2) simplicity and feasibility of scale interpretation while ensuring characterization of relevant angiographic findings, and (3) high inter-rater reproducibility. To address these issues, a multidisciplinary panel of neurointerventionalists, neuroradiologists, and stroke neurologists with extensive experience in neuroimaging and IAT, convened at the “Consensus Meeting on Revascularization Grading Following Endovascular Therapy” with the goal …


Stroke | 2006

Distinguishing Between Stroke and Mimic at the Bedside The Brain Attack Study

Peter J. Hand; Joseph Kwan; Richard Lindley; Martin Dennis; Joanna M. Wardlaw

Background and Purpose— The bedside clinical assessment of the patient with suspected stroke has not been well studied. Improving clinical skills may accelerate patient progress through the emergency department. We aimed to determine the frequency and nature of stroke mimics and to identify the key clinical features that distinguish between stroke and mimic at the bedside. Methods— Consecutive presentations to an urban teaching hospital with suspected stroke were recruited. A standard bedside clinical assessment was performed. The final diagnosis was determined by an expert panel, which had access to clinical features, brain imaging, and other tests. Univariate and multivariate analyses determined the bedside features that distinguished stroke from mimic. Results— There were 350 presentations by 336 patients. The final diagnosis was stroke in 241 of 350 (69%) and mimic in 109 (31%). The mimics included 44 events labeled “possible stroke or TIA.” Eight items independently predicted the diagnosis in patients presenting with brain attack: cognitive impairment and abnormal signs in other systems suggested a mimic, an exact time of onset, definite focal symptoms, abnormal vascular findings, presence of neurological signs, being able to lateralize the signs to the left or right side of the brain, and being able to determine a clinical stroke subclassification suggested a stroke. Conclusions— The bedside clinical assessment can be streamlined substantially. This has important implications for teaching less experienced clinicians how to assess the patient with suspected stroke.


The Lancet | 2006

Non-invasive imaging compared with intra-arterial angiography in the diagnosis of symptomatic carotid stenosis: a meta-analysis

Joanna M. Wardlaw; Francesca M. Chappell; Jjk Best; K Wartolowska; E Berry

BACKGROUND Accurate carotid imaging is important for effective secondary stroke prevention. Non-invasive imaging, now widely available, is replacing intra-arterial angiography for carotid stenosis, but the accuracy remains uncertain despite an extensive literature. We systematically reviewed the accuracy of non-invasive imaging compared with intra-arterial angiography for diagnosing carotid stenosis in patients with carotid territory ischaemic symptoms. METHODS We searched for articles published between 1980 and April 2004; included studies comparing non-invasive imaging with intra-arterial angiography that met Standards for Reporting of Diagnostic Accuracy (STARD) criteria; extracted data to calculate sensitivity and specificity of non-invasive imaging, to test for heterogeneity and to perform sensitivity analyses; and categorised percent stenosis by the North American Symptomatic Carotid Endarterectomy Trial (NASCET) method. RESULTS In 41 included studies (2541 patients, 4876 arteries), contrast-enhanced MR angiography was more sensitive (0.94, 95% CI 0.88-0.97) and specific (0.93, 95% CI 0.89-0.96) for 70-99% stenosis than Doppler ultrasound, MR angiography, and CT angiography (sensitivities 0.89, 0.88, 0.76; specificities 0.84, 0.84, 0.94, respectively). Data for 50-69% stenoses and combinations of non-invasive tests were sparse and unreliable. There was heterogeneity between studies and evidence of publication bias. INTERPRETATION Non-invasive tests, used cautiously, could replace intra-arterial carotid angiography for 70-99% stenosis. However, more data are required to determine their accuracy, especially at 50-69% stenoses where the balance of risk and benefit for carotid endarterectomy is particularly narrow, and to explore and overcome heterogeneity. Methodology for evaluating imaging tests should be improved; blinded, prospective studies in clinically relevant patients are essential basic characteristics.


Journal of Neurology, Neurosurgery, and Psychiatry | 2003

Increased blood–brain barrier permeability in type II diabetes demonstrated by gadolinium magnetic resonance imaging

Joanna M. Wardlaw; Karen J. Ferguson; Alasdair M.J. MacLullich; Ian J. Deary; Ian Marshall

Objectives: Patients with type II diabetes are at increased risk of cognitive impairment. The retinal and renal complications of diabetes follow microvascular damage permitting small arterioles to leak, hence the cerebral damage might also follow loss of blood–brain barrier (BBB) integrity. Magnetic resonance (MR) brain imaging with intravenous gadolinium (Gd) diethylenetriamine pentaacetic acid (Gd-DTPA) was used to identify increased BBB permeability. Methods: Ten well controlled type II diabetic patients aged 65–70 years and 10 controls underwent MR brain imaging with fluid attenuated inversion recovery (FLAIR); T1 weighted (T1W) volumetric imaging before; and T1W volumetric imaging at 5, 15, 30, 45, 60, and 90 minutes after intravenous Gd-DTPA. The T1W image before Gd-DTPA was subtracted from the images at each time point after Gd-DTPA. Net signal intensity was plotted against time for different brain regions. White matter hyperintensities were scored from the FLAIR image. Results: The signal intensity/time curves showed that brain signal intensity increased more in the diabetic group than controls during the first 15 minutes after Gd-DTPA, particularly in the basal ganglia (p=0.018). Signal intensity in controls peaked at five minutes and diabetics at 15 minutes. Subjects with more white matter hyperintensities had greater signal increase after Gd-DTPA, whether diabetic or not (p=0.001). Conclusions: Increased BBB permeability with MR imaging was detected in patients with type II diabetes or white matter hyperintensities. Increased permeability of the BBB might account for some of the cerebral effects of type II diabetes, and so possibly also for the effect of other conditions that affect the microvasculature (like hypertension), on the brain.

Collaboration


Dive into the Joanna M. Wardlaw's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian J. Deary

University of Edinburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ian Marshall

University of Edinburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge