Joanna Niedziolka-Jonsson
Polish Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joanna Niedziolka-Jonsson.
ACS Applied Materials & Interfaces | 2012
Izabela Kamińska; Manash R. Das; Yannick Coffinier; Joanna Niedziolka-Jonsson; Jonusz Sobczak; Patrice Woisel; Joël Lyskawa; Marcin Opallo; Rabah Boukherroub; Sabine Szunerits
An easy and environmentally friendly chemical method for the simultaneous reduction and noncovalent functionalization of graphene oxide (GO) using dopamine derivatives is described. The reaction takes place at room temperature under ultrasonication of an aqueous suspension of GO and a dopamine derivative. X-ray photoelectron spectroscopy, FT-IR spectroscopy, and cyclic voltammetry characterizations revealed that the resulting material consists of graphene functionalized with the dopamine derivative. This one-step protocol is applied for simultaneous reduction and functionalization of graphene oxide with a dopamine derivative bearing an azide function. The chemical reactivity of the azide function was demonstrated by a postfunctionalization with ethynylferrocene using the Cu(I) catalyzed 1,3-dipolar cyloaddition.
Biosensors and Bioelectronics | 2013
Palaniappan Subramanian; Adam Lesniewski; Izabela Kaminska; Alexis Vlandas; Alina Vasilescu; Joanna Niedziolka-Jonsson; Emmanuelle Pichonat; Henri Happy; Rabah Boukherroub; Sabine Szunerits
The paper reports on a surface plasmon resonance (SPR)-based approach for the sensitive and selective detection of lysozyme. The SPR sensor consists of a 50 nm gold film coated with a thin film of reduced graphene oxide (rGO) functionalized with anti-lysozyme DNA aptamer. The SPR chip coating with rGO matrix was achieved through electrophoretic deposition of graphene oxide (GO) at 150 V. Electrophoretic deposition resulted in partial reduction of GO to rGO with a thickness depending on the deposition time. For very short time pulses of 20 s, the resulting rGO film had a thickness of several nanometers and was appropriate for SPR sensing. The utility of the graphene-based SPR sensor for the selective and sensitive detection of proteins was demonstrated using lysozyme as model protein. Functionalization of rGO matrix with anti-lysozyme DNA aptamer through π-stacking interactions allowed selective SPR detection of lysozyme. The graphene-based SPR biosensor provides a means for the label-free, concentration-dependent and selective detection of lysozymes with a detection limit of 0.5 nM.
Journal of Materials Chemistry | 2014
Palaniappan Subramanian; Joanna Niedziolka-Jonsson; Adam Lesniewski; Qian Wang; Musen Li; Rabah Boukherroub; Sabine Szunerits
A sensitive and stable non-enzymatic sensing platform for D-glucose based on a reduced graphene oxide (rGO) matrix modified with Ni(OH)2 nanostructures was established. The sensing matrix was fabricated in one-step through an electrophoretic deposition approach. It is based on the mixing of negatively charged graphene oxide (GO) with nickel ions resulting in a positively charged composite making cathodic electrophoretic deposition possible. The thickness of the resulting rGO/Ni(OH)2 matrix deposited on Au could be controlled by varying the time of electrophoretic deposition. The rGO/Ni(OH)2 matrix was characterized by X-ray photoelectron spectroscopy, Raman spectroscopy and cyclic voltammetry. The rGO/Ni(OH)2 electrodes exhibited excellent electrocatalytic behaviour towards glucose oxidation in alkaline medium. The response current of the sensor is linear to glucose concentrations from 15 μM to 30 mM with a sensitivity of 11.4 ± 0 mA cm−2 mM−1. The interface was much more stable than drop-cast films. These results pave the way for electrophoretic deposition as a competitive alternative over drop-casting for the fabrication of rGO modified interfaces.
Biosensors and Bioelectronics | 2013
Qi Wang; Izabela Kaminska; Joanna Niedziolka-Jonsson; Marcin Opallo; Musen Li; Rabah Boukherroub; Sabine Szunerits
A sensitive electrochemical active interface for sugar sensing based on the specific boronic acid-diol binding was established. The sensing matrix was formed by stirring a suspension of graphene oxide (GO) with 4-aminophenylboronic acid (APBA). The resulting composite consists of a water insoluble precipitate of reduced graphene oxide (rGO) with APBA incorporated into the rGO matrix. Differential pulse voltammetry (DPV) on glassy carbon electrodes modified with rGO/APBA was used for the detection of fructose, mannose and glucose. The fabricated sensor exhibited a wide linear range with detection limits of 100 nM for fructose, and around 800 nM for mannose and glucose.
Bioconjugate Chemistry | 2014
Adam Lesniewski; Marcin Los; Martin Jönsson-Niedziolka; Anna Krajewska; Katarzyna Szot; Joanna M. Los; Joanna Niedziolka-Jonsson
Herein, we report a colorimetric immunosensor for T7 bacteriophage based on gold nanoparticles modified with covalently bonded anti-T7 antibodies. The new immunosensor allows for a fast, simple, and selective detection of T7 virus. T7 virions form immunological complexes with the antibody modified gold nanoparticles which causes them to aggregate. The aggregation can be observed with the naked eye as a color change from red to purple, as well as with a UV-vis spectrophotometer. The aggregate formation was confirmed with SEM imaging. Sensor selectivity against the M13 bacteriophage was demonstrated. The limit of detection (LOD) is 1.08 × 10(10) PFU/mL (18 pM) T7. The new method was compared with a traditional plaque test. In contrast to biological tests the colorimetric method allows for detection of all T7 phages, not only those biologically active. This includes phage ghosts and fragments of virions. T7 virus has been chosen as a model organism for adenoviruses. The described method has several advantages over the traditional ones. It is much faster than a standard plaque test. It is more robust since no bacteria-virus interactions are utilized in the detection process. Since antibodies are available for a large variety of pathogenic viruses, the described concept is very flexible and can be adapted to detect many different viruses, not only bacteriophages. Contrary to the classical immunoassays, it is a one-step detection method, and no additional amplification, e.g., enzymatic, is needed to read the result.
Langmuir | 2010
Larbi Touahir; Joanna Niedziolka-Jonsson; Elisabeth Galopin; Rabah Boukherroub; Anne Chantal Gouget-Laemmel; Ionel Solomon; Mikhail Petukhov; Jean-Noël Chazalviel; F. Ozanam; Sabine Szunerits
The paper reports on a novel surface plasmon resonance (SPR) substrate architecture based on the coating of a gold (Au) or silver (Ag) substrate with 5 nm thin amorphous silicon-carbon alloy films. Ag/a-Si(1-x)C(x):H and Au/a-Si(1-x)C(x):H multilayers are found to provide a significant advantage in terms of sensitivity over both Ag and Au for SPR refractive index sensing. The possibility for the subsequent linking of stable organic monolayers through Si-C bonds is demonstrated. In a proof-of-principle experiment that this structure can be used for real-time biosensing experiments, amine terminated biotin was covalently linked to the acid-terminated SPR surface and the specific streptavidin-biotin interaction recorded.
Bioelectrochemistry | 2010
Larbi Touahir; P. Allongue; D. Aureau; Rabah Boukherroub; J.-N. Chazalviel; Elisabeth Galopin; Anne Chantal Gouget-Laemmel; C. Henry de Villeneuve; A. Moraillon; Joanna Niedziolka-Jonsson; F. Ozanam; J. Salvador Andresa; Sabrina Sam; Ionel Solomon; Sabine Szunerits
(111) silicon surfaces can be controlled down to atomic level and offer a remarkable starting point for elaborating nanostructures. Hydrogenated surfaces are obtained by oxide dissolution in hydrofluoric acid or ammonium fluoride solution. Organic species are grafted onto the hydrogenated surface by a hydrosilylation reaction, providing a robust covalent Si-C bonding. Finally, probe molecules can be anchored to the organic end group, paving the way to the elaboration of sensors. Fluorescence detection is hampered by the high refractive index of silicon. However, improved sensitivity is obtained by replacing the bulk silicon substrate by a thin layer of amorphous silicon deposited on a reflector. The development of a novel hybrid SPR interface by the deposition of an amorphous silicon-carbon alloy is also presented. Such an interface allows the subsequent linking of stable organic monolayers through Si-C bonds for a plasmonic detection. On the other hand, the semiconducting properties of silicon can be used to implement field-effect label-free detection. However, the electrostatic interaction between adsorbed species may lead to a spreading of the adsorption isotherms, which should not be overlooked in practical operating conditions of the sensor. Atomically flat silicon surfaces may allow for measuring recognition interactions with local-probe microscopy.
Chemistry: A European Journal | 2013
Izabela Kamińska; Wang Qi; Alexandre Barras; Janusz W. Sobczak; Joanna Niedziolka-Jonsson; Patrice Woisel; Joël Lyskawa; William Laure; Marcin Opallo; Musen Li; Rabah Boukherroub; Sabine Szunerits
The large-scale preparation of graphene is of great importance due to its potential applications in various fields. We report herein a simple method for the simultaneous exfoliation and reduction of graphene oxide (GO) to reduced GO (rGO) by using alkynyl-terminated dopamine as the reducing agent. The reaction was performed under mild conditions to yield rGO functionalized with the dopamine derivative. The chemical reactivity of the alkynyl function was demonstrated by post-functionalization with two thiolated precursors, namely 6-(ferrocenyl)hexanethiol and 1H,1H,2H,2H-perfluorodecanethiol. X-ray photoelectron spectroscopy, UV/Vis spectrophotometry, Raman spectroscopy, conductivity measurements, and cyclic voltammetry were used to characterize the resulting surfaces.
Biosensors and Bioelectronics | 2010
Elisabeth Galopin; Larbi Touahir; Joanna Niedziolka-Jonsson; Rabah Boukherroub; Anne Chantal Gouget-Laemmel; Jean-Noël Chazalviel; F. Ozanam; Sabine Szunerits
This paper describes a novel platform for preparing localized surface plasmon resonance (LSPR) sensing surfaces. It is based on the coating of gold nanostructures deposited on glass with an amorphous silicon-carbon alloy overcoating. The interest in coating the Au NSs with an amorphous silicon-carbon alloy resides in the possibility of incorporating carboxyl functions directly onto the surface via Si-C covalent bonds. This permits the use of hyrdosilylation reactions to modify the sensor surface. The use of this multilayer structure for the detection of hybridization events is discussed.
Langmuir | 2010
Joanna Niedziolka-Jonsson; Barka F; Xavier Castel; Marcin Pisarek; Nacer Bezzi; Rabah Boukherroub; Sabine Szunerits
This article reports on the fabrication and characterization of plasmonic interfaces composed of a sandwiched structure comprising a tin-doped indium oxide (ITO) substrate, gold nanostructures (Au NSs), and a thin ITO film overcoating. The change in the optical characteristics of the ITO/Au NSs/ITO interfaces as a function of the ITO overlayer thickness (d(ITO) = 0-200 nm) was followed by recording UV-vis transmission spectra. The influence of the thickness of the ITO overcoating on the position and shape of the plasmonic signal is discussed. The possibility to functionalize the ITO/Au NSs/ITO interfaces chemically is demonstrated by covalently linking ethynyl ferrocene to azide-terminated ITO/Au NSs/ITO interfaces. The resulting interfaces were characterized using X-ray photoelectron spectroscopy (XPS), electrochemical (cyclic voltammetry and differential pulse voltammetry) techniques, and UV-vis transmission spectroscopy.