Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joanna S. Kerley-Hamilton is active.

Publication


Featured researches published by Joanna S. Kerley-Hamilton.


Developmental Cell | 2010

VEGF Receptor 2 Endocytic Trafficking Regulates Arterial Morphogenesis

Anthony A. Lanahan; Karlien Hermans; Filip Claes; Joanna S. Kerley-Hamilton; Zhen W. Zhuang; Frank J. Giordano; Peter Carmeliet; Michael Simons

VEGF is the key growth factor regulating arterial morphogenesis. However, molecular events involved in this process have not been elucidated. Synectin null mice demonstrate impaired VEGF signaling and a marked reduction in arterial morphogenesis. Here, we show that this occurs due to delayed trafficking of VEGFR2-containing endosomes that exposes internalized VEGFR2 to selective dephosphorylation by PTP1b on Y(1175) site. Synectin involvement in VEGFR2 intracellular trafficking requires myosin-VI, and myosin-VI knockout in mice or knockdown in zebrafish phenocopy the synectin null phenotype. Silencing of PTP1b restores VEGFR2 activation and significantly recovers arterial morphogenesis in myosin-VI(-/-) knockdown zebrafish and synectin(-/-) mice. We conclude that activation of the VEGF-mediated arterial morphogenesis cascade requires phosphorylation of the VEGFR2 Y(1175) site that is dependent on trafficking of internalized VEGFR2 away from the plasma membrane via a synectin-myosin-VI complex. This key event in VEGF signaling occurs at an intracellular site and is regulated by a novel endosomal trafficking-dependent process.


Oncogene | 2005

A p53-dominant transcriptional response to cisplatin in testicular germ cell tumor-derived human embyronal carcinoma

Joanna S. Kerley-Hamilton; Aimee M. Pike; Na Li; James DiRenzo; Michael J. Spinella

Testicular germ cell cancers remain one of the few solid tumors routinely cured in advanced stages with conventional cisplatin-based chemotherapy. The mechanisms remain largely unknown. Through use of gene-expression array profiling we define immediate transcriptional targets in response to cisplatin in testicular germ cell-derived human embryonal carcinoma cells. We report 46 genes upregulated and five genes repressed by cisplatin. Several of these gene products, including FAS, TRAILR3, PHLDA3, LRDD, and IER3 are previously implicated in the apoptotic death receptor pathway, while others including SESN1, FDXR, PLK3, and DDIT4 are known mediators of reactive oxygen species generation. Approximately 54% of the upregulated genes are established or suspected downstream targets of p53. Specific siRNA to p53 prevents cisplatin-mediated activation of p53 and p53 pathway genes and renders embryonal carcinoma cells relatively resistant to cisplatin cytotoxicity. Interestingly, in p53 knockdown cells nearly the entire set of identified cisplatin targets fail to respond or have a diminished response to cisplatin, suggesting that many are new direct or indirect targets of p53 including GPR87, STK17A, INPP5D, FLJ11259, and EPS8L2. The data indicate that robust transcriptional activation of p53 is linked to the known hypersensitivity of testicular germ cell tumors to chemotherapy. Many of the gene products may participate in the unique curability of this disease.


Toxicological Sciences | 2012

Inherent and Benzo[a]pyrene-Induced Differential Aryl Hydrocarbon Receptor Signaling Greatly Affects Life Span, Atherosclerosis, Cardiac Gene Expression, and Body and Heart Growth in Mice

Joanna S. Kerley-Hamilton; Heidi W. Trask; Christian J.A. Ridley; Eric DuFour; Corina Lesseur; Carol S. Ringelberg; Karen L. Moodie; Samantha Shipman; Murray Korc; Jiang Gui; Nicholas W. Shworak; Craig R. Tomlinson

Little is known of the environmental factors that initiate and promote disease. The aryl hydrocarbon receptor (AHR) is a key regulator of xenobiotic metabolism and plays a major role in gene/environment interactions. The AHR has also been demonstrated to carry out critical functions in development and disease. A qualitative investigation into the contribution by the AHR when stimulated to different levels of activity was undertaken to determine whether AHR-regulated gene/environment interactions are an underlying cause of cardiovascular disease. We used two congenic mouse models differing at the Ahr gene, which encodes AHRs with a 10-fold difference in signaling potencies. Benzo[a]pyrene (BaP), a pervasive environmental toxicant, atherogen, and potent agonist for the AHR, was used as the environmental agent for AHR activation. We tested the hypothesis that activation of the AHR of different signaling potencies by BaP would have differential effects on the physiology and pathology of the mouse cardiovascular system. We found that differential AHR signaling from an exposure to BaP caused lethality in mice with the low-affinity AHR, altered the growth rates of the body and several organs, induced atherosclerosis to a greater extent in mice with the high-affinity AHR, and had a huge impact on gene expression of the aorta. Our studies also demonstrated an endogenous role for AHR signaling in regulating heart size. We report a gene/environment interaction linking differential AHR signaling in the mouse to altered aorta gene expression profiles, changes in body and organ growth rates, and atherosclerosis.


Environmental Health Perspectives | 2012

Obesity Is Mediated by Differential Aryl Hydrocarbon Receptor Signaling in Mice Fed a Western Diet

Joanna S. Kerley-Hamilton; Heidi W. Trask; Christian J.A. Ridley; Eric DuFour; Carol S. Ringelberg; Nilufer Nurinova; Diandra Wong; Karen L. Moodie; Samantha Shipman; Jason H. Moore; Murray Korc; Nicholas W. Shworak; Craig R. Tomlinson

Background: Obesity is a growing worldwide problem with genetic and environmental causes, and it is an underlying basis for many diseases. Studies have shown that the toxicant-activated aryl hydrocarbon receptor (AHR) may disrupt fat metabolism and contribute to obesity. The AHR is a nuclear receptor/transcription factor that is best known for responding to environmental toxicant exposures to induce a battery of xenobiotic-metabolizing genes. Objectives: The intent of the work reported here was to test more directly the role of the AHR in obesity and fat metabolism in lieu of exogenous toxicants. Methods: We used two congenic mouse models that differ at the Ahr gene and encode AHRs with a 10-fold difference in signaling activity. The two mouse strains were fed either a low-fat (regular) diet or a high-fat (Western) diet. Results: The Western diet differentially affected body size, body fat:body mass ratios, liver size and liver metabolism, and liver mRNA and miRNA profiles. The regular diet had no significant differential effects. Conclusions: The results suggest that the AHR plays a large and broad role in obesity and associated complications, and importantly, may provide a simple and effective therapeutic strategy to combat obesity, heart disease, and other obesity-associated illnesses.


Journal of Biomedical Optics | 2010

System development for high frequency ultrasound-guided fluorescence quantification of skin layers

Josiah Gruber; Akshat Paliwal; Venkataramanan Krishnaswamy; Hamid R. Ghadyani; Michael Jermyn; Julie A. O'hara; Scott C. Davis; Joanna S. Kerley-Hamilton; Nicholas W. Shworak; Edward V. Maytin; Tayyaba Hasan; Brian W. Pogue

A high frequency ultrasound-coupled fluorescence tomography system, primarily designed for imaging of protoporphyrin IX production in skin tumors in vivo, is demonstrated for the first time. The design couples fiber-based spectral sampling of the protoporphyrin IX fluorescence emission with high frequency ultrasound imaging, allowing thin-layer fluorescence intensities to be quantified. The system measurements are obtained by serial illumination of four linear source locations, with parallel detection at each of five interspersed detection locations, providing 20 overlapping measures of subsurface fluorescence from both superficial and deep locations in the ultrasound field. Tissue layers are defined from the segmented ultrasound images and diffusion theory used to estimate the fluorescence in these layers. The system calibration is presented with simulation and phantom validation of the system in multilayer regions. Pilot in-vivo data are also presented, showing recovery of subcutaneous tumor tissue values of protoporphyrin IX in a subcutaneous U251 tumor, which has less fluorescence than the skin.


Toxicology and Applied Pharmacology | 2016

Inhibition of the aryl hydrocarbon receptor prevents Western diet-induced obesity. Model for AHR activation by kynurenine via oxidized-LDL, TLR2/4, TGFβ, and IDO1.

Benjamin J. Moyer; Itzel Y. Rojas; Joanna S. Kerley-Hamilton; Haley F. Hazlett; Krishnamurthy V. Nemani; Heidi W. Trask; Rachel West; Leslie E. Lupien; Alan J. Collins; Carol S. Ringelberg; Barjor Gimi; William B. Kinlaw; Craig R. Tomlinson

Obesity is an increasingly urgent global problem, yet, little is known about its causes and less is known how obesity can be effectively treated. We showed previously that the aryl hydrocarbon receptor (AHR) plays a role in the regulation of body mass in mice fed Western diet. The AHR is a ligand-activated nuclear receptor that regulates genes involved in a number of biological pathways, including xenobiotic metabolism and T cell polarization. This study was an investigation into whether inhibition of the AHR prevents Western diet-based obesity. Male C57Bl/6J mice were fed control and Western diets with and without the AHR antagonist α-naphthoflavone or CH-223191, and a mouse hepatocyte cell line was used to delineate relevant cellular pathways. Studies are presented showing that the AHR antagonists α-naphthoflavone and CH-223191 significantly reduce obesity and adiposity and ameliorates liver steatosis in male C57Bl/6J mice fed a Western diet. Mice deficient in the tryptophan metabolizing enzyme indoleamine 2,3-dioxygenase 1 (IDO1) were also resistant to obesity. Using an AHR-directed, luciferase-expressing mouse hepatocyte cell line, we show that the transforming growth factor β1 (TGFβ1) signaling pathway via PI3K and NF-κB and the toll-like receptor 2/4 (TLR2/4) signaling pathway stimulated by oxidized low-density lipoproteins via NF-κB, each induce luciferase expression; however, TLR2/4 signaling was significantly reduced by inhibition of IDO1. At physiological levels, kynurenine but not kynurenic acid (both tryptophan metabolites and known AHR agonists) activated AHR-directed luciferase expression. We propose a hepatocyte-based model, in which kynurenine production is increased by enhanced IDO1 activity stimulated by TGFβ1 and TLR2/4 signaling, via PI3K and NF-κB, to perpetuate a cycle of AHR activation to cause obesity; and inhibition of the AHR, in turn, blocks the cycles output to prevent obesity. The AHR with its broad ligand binding specificity is a promising candidate for a potentially simple therapeutic approach for the prevention and treatment of obesity and associated complications.


Journal of Biological Chemistry | 2011

Serine/Threonine Kinase 17A Is a Novel p53 Target Gene and Modulator of Cisplatin Toxicity and Reactive Oxygen Species in Testicular Cancer Cells

Pingping Mao; Mary P. Hever; Lynne M. Niemaszyk; Jessica M. Haghkerdar; Esty G. yanco; Damayanti Desai; Maroun J. Beyrouthy; Joanna S. Kerley-Hamilton; Sarah J. Freemantle; Michael J. Spinella

Testicular cancer is highly curable with cisplatin-based therapy, and testicular cancer-derived human embryonal carcinoma (EC) cells undergo a p53-dominant transcriptional response to cisplatin. In this study, we have discovered that a poorly characterized member of the death-associated protein family of serine/threonine kinases, STK17A (also called DRAK1), is a novel p53 target gene. Cisplatin-mediated induction of STK17A in the EC cell line NT2/D1 was prevented with p53 siRNA. Furthermore, STK17A was induced with cisplatin in HCT116 and MCF10A cells but to a much lesser extent in isogenic p53-suppressed cells. A functional p53 response element that binds endogenous p53 in a cisplatin-dependent manner was identified 5 kb upstream of the first coding exon of STK17A. STK17A is not present in the mouse genome, but the closely related gene STK17B is induced with cisplatin in mouse NIH3T3 cells, although this induction is p53-independent. Interestingly, in human cells containing both STK17A and STK17B, only STK17A is induced with cisplatin. Knockdown of STK17A conferred resistance to cisplatin-induced growth suppression and apoptotic cell death in EC cells. This was associated with the up-regulation of detoxifying and antioxidant genes, including metallothioneins MT1H, MT1M, and MT1X that have previously been implicated in cisplatin resistance. In addition, knockdown of STK17A resulted in decreased cellular reactive oxygen species, whereas STK17A overexpression increased reactive oxygen species. In summary, we have identified STK17A as a novel direct target of p53 and a modulator of cisplatin toxicity and reactive oxygen species in testicular cancer cells.


Journal of biomolecular techniques | 2015

Evaluation of commercially available RNA amplification kits for RNA sequencing using very low input amounts of total RNA

Savita Shanker; Ariel Paulson; Howard J. Edenberg; Allison Peak; Anoja Perera; Yuriy O. Alekseyev; Nicholas Beckloff; Nathan J. Bivens; Robert Donnelly; Allison F. Gillaspy; Deborah S. Grove; Weikuan Gu; Nadereh Jafari; Joanna S. Kerley-Hamilton; Robert H. Lyons; Clifford G. Tepper; Charles M. Nicolet

This article includes supplemental data. Please visit http://www.fasebj.org to obtain this information.Multiple recent publications on RNA sequencing (RNA-seq) have demonstrated the power of next-generation sequencing technologies in whole-transcriptome analysis. Vendor-specific protocols used for RNA library construction often require at least 100 ng total RNA. However, under certain conditions, much less RNA is available for library construction. In these cases, effective transcriptome profiling requires amplification of subnanogram amounts of RNA. Several commercial RNA amplification kits are available for amplification prior to library construction for next-generation sequencing, but these kits have not been comprehensively field evaluated for accuracy and performance of RNA-seq for picogram amounts of RNA. To address this, 4 types of amplification kits were tested with 3 different concentrations, from 5 ng to 50 pg, of a commercially available RNA. Kits were tested at multiple sites to assess reproducibility and ease of use. The human total reference RNA used was spiked with a control pool of RNA molecules in order to further evaluate quantitative recovery of input material. Additional control data sets were generated from libraries constructed following polyA selection or ribosomal depletion using established kits and protocols. cDNA was collected from the different sites, and libraries were synthesized at a single site using established protocols. Sequencing runs were carried out on the Illumina platform. Numerous metrics were compared among the kits and dilutions used. Overall, no single kit appeared to meet all the challenges of small input material. However, it is encouraging that excellent data can be recovered with even the 50 pg input total RNA.


Nutrition Research | 2017

Obesity and fatty liver are prevented by inhibition of the aryl hydrocarbon receptor in both female and male mice

Benjamin J. Moyer; Itzel Y. Rojas; Joanna S. Kerley-Hamilton; Krishnamurthy V. Nemani; Heidi W. Trask; Carol S. Ringelberg; Barjor Gimi; Eugene Demidenko; Craig R. Tomlinson

Inhibition of the aryl hydrocarbon receptor (AHR) prevents Western diet-induced obesity and fatty liver in C57Bl/6J (B6) male mice. The AHR is a ligand-activated nuclear receptor that regulates genes involved in xenobiotic metabolism and T-cell differentiation. Here, we tested the hypothesis that AHR antagonism would also prevent obesity and fatty liver in female mice and that B6 mice (higher-affinity AHR) and congenic B6.D2 mice (lower-affinity AHR) would differentially respond to AHR inhibition. Female and male adult B6 and B6.D2 mice were fed control and Western diets with and without α-naphthoflavone (NF), an AHR inhibitor. A nonlinear mixed-model analysis was developed to project asymptote body mass. We found that obesity, adiposity, and liver steatosis were reduced to near control levels in all female and male B6 and B6.D2 experimental groups fed Western diet with NF. However, differences were noted in that female B6.D2 vs B6 mice on Western diet became more obese; and in general, female mice compared with male mice had a greater fat mass to body mass ratio, were less responsive to NF, and had reduced liver steatosis and hepatomegaly. We report that male mice fed Western diet containing NF or CH-223191, another AHR inhibitor, caused reduced mRNA levels of several liver genes involved in metabolism, including Cyp1b1 and Scd1, offering evidence for a possible mechanism by which the AHR regulates obesity. In conclusion, although there are some sex- and Ahr allelic-dependent differences, AHR inhibition prevents obesity and liver steatosis in both males and females regardless of the ligand-binding capacity of the AHR. We also present evidence consistent with the notion that an AHR-CYP1B1-SCD1 axis is involved in obesity, providing potentially convenient and effective targets for treatment.


Journal of Neurosurgery | 2016

MicroRNA and gene expression changes in unruptured human cerebral aneurysms

Kimon Bekelis; Joanna S. Kerley-Hamilton; Amy Teegarden; Craig R. Tomlinson; Rachael Kuintzle; Nathan E. Simmons; Robert J. Singer; David W. Roberts; Manolis Kellis; David A. Hendrix

OBJECTIVE The molecular mechanisms behind cerebral aneurysm formation and rupture remain poorly understood. In the past decade, microRNAs (miRNAs) have been shown to be key regulators in a host of biological processes. They are noncoding RNA molecules, approximately 21 nucleotides long, that posttranscriptionally inhibit mRNAs by attenuating protein translation and promoting mRNA degradation. The miRNA and mRNA interactions and expression levels in cerebral aneurysm tissue from human subjects were profiled. METHODS A prospective case-control study was performed on human subjects to characterize the differential expression of mRNA and miRNA in unruptured cerebral aneurysms in comparison with control tissue (healthy superficial temporal arteries [STA]). Ion Torrent was used for deep RNA sequencing. Affymetrix miRNA microarrays were used to analyze miRNA expression, whereas NanoString nCounter technology was used for validation of the identified targets. RESULTS Overall, 7 unruptured cerebral aneurysm and 10 STA specimens were collected. Several differentially expressed genes were identified in aneurysm tissue, with MMP-13 (fold change 7.21) and various collagen genes (COL1A1, COL5A1, COL5A2) being among the most upregulated. In addition, multiple miRNAs were significantly differentially expressed, with miR-21 (fold change 16.97) being the most upregulated, and miR-143-5p (fold change -11.14) being the most downregulated. From these, miR-21, miR-143, and miR-145 had several significantly anticorrelated target genes in the cohort that are associated with smooth muscle cell function, extracellular matrix remodeling, inflammation signaling, and lipid accumulation. All these processes are crucial to the pathophysiology of cerebral aneurysms. CONCLUSIONS This analysis identified differentially expressed genes and miRNAs in unruptured human cerebral aneurysms, suggesting the possibility of a role for miRNAs in aneurysm formation. Further investigation for their importance as therapeutic targets is needed.

Collaboration


Dive into the Joanna S. Kerley-Hamilton's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allison F. Gillaspy

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Allison Peak

Stowers Institute for Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge