Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joanna Ślusarczyk is active.

Publication


Featured researches published by Joanna Ślusarczyk.


Frontiers in Cellular Neuroscience | 2015

Prenatal stress is a vulnerability factor for altered morphology and biological activity of microglia cells

Joanna Ślusarczyk; Ewa Trojan; Katarzyna Głombik; Bogusława Budziszewska; Marta Kubera; Władysław Lasoń; Katarzyna Popiolek-Barczyk; Joanna Mika; Krzysztof Wędzony; Agnieszka Basta-Kaim

Several lines of evidence suggest that the dysregulation of the immune system is an important factor in the development of depression. Microglia are the resident macrophages of the central nervous system and a key player in innate immunity of the brain. We hypothesized that prenatal stress (an animal model of depression) as a priming factor could affect microglial cells and might lead to depressive-like disturbances in adult male rat offspring. We investigated the behavioral changes (sucrose preference test, Porsolt test), the expression of C1q and CD40 mRNA and the level of microglia (Iba1 positive) in 3-month-old control and prenatally stressed male offspring rats. In addition, we characterized the morphological and biochemical parameters of potentially harmful (NO, iNOS, IL-1β, IL-18, IL-6, TNF-α, CCL2, CXCL12, CCR2, CXCR4) and beneficial (insulin-like growth factor-1 (IGF-1), brain derived neurotrophic factor (BDNF)) phenotypes in cultures of microglia obtained from the cortices of 1–2 days old control and prenatally stressed pups. The adult prenatally stressed rats showed behavioral (anhedonic- and depression-like) disturbances, enhanced expression of microglial activation markers and an increased number of Iba1-immunopositive cells in the hippocampus and frontal cortex. The morphology of glia was altered in cultures from prenatally stressed rats, as demonstrated by immunofluorescence microscopy. Moreover, in these cultures, we observed enhanced expression of CD40 and MHC II and release of pro-inflammatory cytokines, including IL-1β, IL-18, TNF-α and IL-6. Prenatal stress significantly up-regulated levels of the chemokines CCL2, CXCL12 and altered expression of their receptors, CCR2 and CXCR4 while IGF-1 production was suppressed in cultures of microglia from prenatally stressed rats. Our results suggest that prenatal stress may lead to excessive microglia activation and contribute to the behavioral changes observed in depression in adulthood.


Pharmacological Reports | 2012

Maternal immune activation leads to age-related behavioral and immunological changes in male rat offspring - the effect of antipsychotic drugs

Agnieszka Basta-Kaim; Ewa Szczęsny; Monika Leśkiewicz; Katarzyna Głombik; Joanna Ślusarczyk; Bogusława Budziszewska; Magdalena Regulska; Marta Kubera; Wojciech Nowak; Krzysztof Wędzony; Władysław Lasoń

BACKGROUND Prenatal immune system disturbances have been postulated to play an important role in pathogenesis of schizophrenia and related disorders. In the present study, we sought to answer the question whether behavioral changes in the neurodevelopmental model of schizophrenia in rats are accompanied by alterations in proliferative activity of splenocytes and pro- and anti-inflammatory cytokine levels. Furthermore, the effects of two antipsychotic drugs on these parameters were determined. METHODS Lipopolysaccharide (LPS) was administered subcutaneously to pregnant dams at a dose of 1 mg/kg every second day from the 7(th) day of pregnancy till delivery. Age-dependent behavioral and immunological changes were studied when control and prenatally LPS-pretreated offspring male rats were 30 and 90 days old. Chlorpromazine (10 mg/kg ip) or clozapine (10 mg/kg ip) was administered chronically (21 days) after behavioral verification to 3 months old offspring males. Changes in sensorimotor gating (prepulse inhibition, PPI), mitogen-induced proliferative activity of splenocytes ([(3)H]-thymidine incorporation) and cytokine levels (ELISA) were measured. RESULTS Prenatally LPS-pretreated rats showed PPI deficit only at 90 but not at 30 days of age, whereas an enhancement of mitogen-stimulated proliferative activity of splenocytes was observed in both time points. Additionally, the level of proinflammatory cytokines (IL-1β, IL-2, IL-6, TNF-α) in prenatally LPS-pretreated rats was enhanced when they were 30 days old and remained elevated in 90 days old offspring. No changes in IL-10 level were observed. Chronic administration of chlorpromazine or clozapine reduced the deficit in PPI deficit in prenatally LPS-treated rats. In the used model, chlorpromazine normalized both T and B lymphocyte proliferation, whereas clozapine B lymphocyte activity only. Moreover, both antipsychotics modulated the enhanced levels of IL-1β, IL-2 and TNF-α in the offspring of LPS-treated mothers. CONCLUSIONS This study indicates that in LPS-evoked model of schizophrenia, peripheral immunological changes are long-lasting and precede behavioral deficit. The disturbances in T cell-mediated immunity as well as cytokine production were attenuated by antipsychotic drug administration.


Pharmacological Reports | 2013

Possible contribution of IGF-1 to depressive disorder

Ewa Szczęsny; Joanna Ślusarczyk; Katarzyna Głombik; Bogusława Budziszewska; Marta Kubera; Władysław Lasoń; Agnieszka Basta-Kaim

Depression is an illness of unknown origin and involves the dysregulation of many physiological processes disturbed in this disease. It has been postulated that the pathomechanism of depression is complex, and apart from changes in neurotransmitters, a dysregulation of the immune and endocrine systems also plays an important role in the development of this disorder. Recent studies indicate that an impairment of synaptic plasticity in specific areas of the central nervous system (CNS), particularly the hippocampus, may be an important factor in the pathogenesis of depression. The abnormal neural plasticity may be related to alterations in the levels of neurotrophic factors. On this basis, a theory connecting the occurrence of depression with disturbances in neurotrophic factors has gained great attention. This review summarizes data suggesting a role for the neurotrophic factors - especially insulin-like-growth factor-1 (IGF-1) - as possible targets for therapy in depression in the context of depressive behavior modulation, anti-inflammatory action and neuroprotection.


Psychoneuroendocrinology | 2015

Maternal stress predicts altered biogenesis and the profile of mitochondrial proteins in the frontal cortex and hippocampus of adult offspring rats

Katarzyna Głombik; Aneta Stachowicz; Joanna Ślusarczyk; Ewa Trojan; Bogusława Budziszewska; Maciej Suski; Marta Kubera; Władysław Lasoń; Krzysztof Wędzony; Rafał Olszanecki; Agnieszka Basta-Kaim

Currently, much attention is focused on the influence of mitochondrial disturbances at the onset of depression. The goal of this study was to investigate the impact of prenatal stress (an animal model of depression) on the mitochondrial biogenesis proteins and mitoproteome profile in the frontal cortex and hippocampus of adult 3-month-old male rats following a prenatal stress procedure. Our results show that rats that were exposed to prenatal stress stimuli displayed depression-like behaviors based on the sucrose preference and elevated plus maze tests. It has been found that the level of the PGC-1α protein was reduced in the frontal cortex and hippocampus of the adult offspring after the prenatal stress procedure. Moreover, in the frontal cortex, the level of the pro-apoptotic protein Bax was up-regulated. Two-dimensional electrophoresis coupled with mass spectrometry showed the statistically significant down-regulation of the mitochondrial ribosomal protein L12 (Mrpl12) and mitochondrial NADH dehydrogenase [ubiquinone] flavoprotein 2 (NDUFV2) as well as the up-regulation of the Tubulin Polymerization Promoting Proteins (Tppp/p25) in the frontal cortex. In contrast, in the hippocampus, the mitochondrial pyruvate dehydrogenase E1 component subunit beta, the voltage-dependent anion-selective channel protein 2 (VDAC2), and the GTP-binding nuclear protein RAN (RAN) were down-regulated and the expression of phosphatidylethanolamine-binding protein 1 (PEBP-1) was enhanced. These findings provide new evidence that stress during pregnancy may lead not only to behavioral deficits, but also to disturbances in the brain mitoproteome profile in adult rat offspring.


Neuroscience | 2015

Prenatal administration of lipopolysaccharide induces sex-dependent changes in glutamic acid decarboxylase and parvalbumin in the adult rat brain

Agnieszka Basta-Kaim; Katarzyna Fijał; Joanna Ślusarczyk; Ewa Trojan; Katarzyna Głombik; B. Budziszewska; Monika Leśkiewicz; Magdalena Regulska; Marta Kubera; Władysław Lasoń; Krzysztof Wędzony

RATIONALE Recent clinical studies suggest GABA-ergic system abnormalities as a neuropathological mechanism of schizophrenia. OBJECTIVES In the present study, we examined the effect of chronic prenatal lipopolysaccharide (LPS) administration on immunohistochemical changes of glutamate decarboxylase (GAD67) and parvalbumin (PV)-expressing neurons in the medial prefrontal cortex and hippocampus of rats. RESULTS These data demonstrated that prenatal LPS administration during the final 2 weeks of pregnancy induced schizophrenia-like behavioral symptoms, such as deficits in sensorimotor gating (prepulse inhibition) and impairments in social interactions and exploration, in adult offspring. Moreover, immunohistochemical analysis revealed that in our neurodevelopmental model of schizophrenia, decreases in the total number of PV- and GAD67-positive neurons in the medial prefrontal cortices of adult females prenatally exposed to LPS were observed, whereas these immunochemical changes were primarily detected in the hippocampus of males. Additionally, a decrease in PV-labeled axon terminals of GABA-ergic cells, likely reflecting the perisomatic inhibitory innervation of pyramidal neurons, was observed in the medial prefrontal cortices in both sexes. CONCLUSION This study provided evidence of a key role for the GABA system in neurodevelopment associated with the etiopathogenesis of schizophrenia and showed that the observed changes are sex-dependent. Moreover, this study is the first to present a model of schizophrenia based on prenatal LPS administration, which not only produced behavioral abnormalities but also changed the cytoarchitecture of the GABA inhibitory system.


Molecular and Cellular Neuroscience | 2016

Blockade of IL-18 signaling diminished neuropathic pain and enhanced the efficacy of morphine and buprenorphine

Dominika Pilat; Anna Piotrowska; Ewelina Rojewska; Agnieszka M. Jurga; Joanna Ślusarczyk; Wioletta Makuch; Agnieszka Basta-Kaim; Barbara Przewlocka; Joanna Mika

Currently, the low efficacy of antinociceptive drugs for the treatment of neuropathic pain is a major therapeutic problem. Here, we show the potential role of interleukin (IL)-18 signaling in this phenomenon. IL-18 is an important molecule that performs various crucial functions, including the alteration of nociceptive transmission in response to neuropathic pain. We have studied the changes in the mRNA and protein levels (qRT-PCR and Western blot analysis, respectively) of IL-18, IL-18-binding protein (IL-18BP) and the IL-18 receptor (IL-18R) over time in rats following chronic constriction injury (CCI) of the sciatic nerve. Our study demonstrated that the spinal levels of IL-18BP were slightly downregulated at days 7 and 14 in the rats subjected to CCI. In contrast, the IL-18 and IL-18R mRNA expression and protein levels were elevated in the ipsilateral spinal cord on days 2, 7 and 14. Moreover, in rats exposed to a single intrathecal administration of IL-18BP (50 and 100 ng) 7 or 14 days following CCI, symptoms of neuropathic pain were attenuated, and the analgesia pursuant to morphine and buprenorphine (0.5 and 2.5 μg) was enhanced. In summary, the restoration of the analgesic activity of morphine and buprenorphine via the blockade of IL-18 signaling suggests that increased IL-18 pathway may account for the decreased analgesic efficacy of opioids for neuropathic pain.


Neurotoxicity Research | 2016

The Beneficial Impact of Antidepressant Drugs on Prenatal Stress-Evoked Malfunction of the Insulin-Like Growth Factor-1 (IGF-1) Protein Family in the Olfactory Bulbs of Adult Rats.

Ewa Trojan; Katarzyna Głombik; Joanna Ślusarczyk; Bogusława Budziszewska; Marta Kubera; Adam Roman; Władysław Lasoń; Agnieszka Basta-Kaim

Insulin-like growth factor-1 (IGF-1) promotes the growth, differentiation, and survival of both neurons and glial cells, and it is believed to exert antidepressant-like activity. Thus, disturbances in the IGF-1 system could be responsible for the course of depression. To date, there have been no papers showing the impact of chronic antidepressant treatment on the IGF-1 network in the olfactory bulb (OB) in an animal model of depression. Prenatal stress was used as model of depression. Twenty-four 3-month-old male offspring of control and stressed mothers were subjected to behavioral testing (forced swim test). The mRNA expression of IGF-1 and IGF-1 receptor (IGF-1R) and the protein level of IGF-1 and its phosphorylation, as well as the concentrations of IGF-binding proteins (IGFBP-2, -4, -3, and -6), were measured in OBs before and after chronic imipramine, fluoxetine, or tianeptine administration. Adult rats exposed prenatally to stressful stimuli displayed not only depression-like behavior but also decreased IGF-1 expression, dysregulation in the IGFBP network, and diminished mRNA expression, as well as IGF-1R phosphorylation, in the OB. The administration of antidepressants normalized most of the changes in the IGF-1 system of the OB evoked by prenatal stress. These results suggested a beneficial effect of chronic antidepressant drug treatment in the alleviation of IGF-1 family malfunction in OBs in an animal model of depression.


Neural Plasticity | 2016

Fractalkine Attenuates Microglial Cell Activation Induced by Prenatal Stress

Joanna Ślusarczyk; Ewa Trojan; Katarzyna Głombik; Katarzyna Chamera; Adam Roman; Bogusława Budziszewska; Agnieszka Basta-Kaim

The potential contribution of inflammation to the development of neuropsychiatric diseases has recently received substantial attention. In the brain, the main immune cells are the microglia. As they are the main source of inflammatory factors, it is plausible that the regulation of their activation may be a potential therapeutic target. Fractalkine (CX3CL1) and its receptor CX3CR1 play a crucial role in the control of the biological activity of the microglia. In the present study, using microglial cultures we investigated whether fractalkine is able to reverse changes in microglia caused by a prenatal stress procedure. Our study found that the microglia do not express fractalkine. Prenatal stress decreases the expression of the fractalkine receptor, which in turn is enhanced by the administration of exogenous fractalkine. Moreover, treatment with fractalkine diminishes the prenatal stress-induced overproduction of proinflammatory factors such as IL-1β, IL-18, IL-6, TNF-α, CCL2, or NO in the microglial cells derived from prenatally stressed newborns. In conclusion, the present results revealed that the pathological activation of microglia in prenatally stressed newborns may be attenuated by fractalkine administration. Therefore, understanding of the role of the CX3CL1-CX3CR1 system may help to elucidate the mechanisms underlying the neuron-microglia interaction and its role in pathological conditions in the brain.


Molecular Neurobiology | 2016

The effect of chronic tianeptine administration on the brain mitochondria: direct links with an animal model of depression

Katarzyna Głombik; Aneta Stachowicz; Rafał Olszanecki; Joanna Ślusarczyk; Ewa Trojan; Władysław Lasoń; Marta Kubera; Bogusława Budziszewska; Michael Spedding; Agnieszka Basta-Kaim

A growing body of evidence has focused on the impact of mitochondrial disturbances in the development of depression, but little data exist regarding the effects of chronic administration of antidepressant drugs on the brain’s mitochondrial protein profile. The aim of this study was to investigate the impact of chronic treatment with an atypical antidepressant drug—tianeptine—on the mitochondria-enriched subproteome profile in the hippocampus and the frontal cortex of 3-month-old male rats following a prenatal stress procedure. Rats that were exposed to a prenatal stress procedure displayed depressive- and anxiety-like disturbances based on the elevated plus-maze and Porsolt tests. Moreover, two-dimensional electrophoresis coupled with mass spectrometry showed structure-dependent mitoproteome changes in brains of prenatally stressed rats after chronic tianeptine administration. A component of 2-oxoglutarate and succinate flavoprotein subunit dehydrogenases, isocitrate subunit alpha, was upregulated in the hippocampus. In the frontal cortex, there was a striking increase in the expression of glutamate dehydrogenase and cytochrome bc1 complex subunit 2. These findings suggest that mitochondria are underappreciated targets for therapeutic interventions, and mitochondrial function may be crucial for the effective treatment of stress-related diseases.


Biochemical Pharmacology | 2016

Beneficial impact of intracerebroventricular fractalkine administration on behavioral and biochemical changes induced by prenatal stress in adult rats: Possible role of NLRP3 inflammasome pathway.

Joanna Ślusarczyk; Ewa Trojan; Karolina Wydra; Katarzyna Głombik; Katarzyna Chamera; Mateusz Kucharczyk; Bogusława Budziszewska; Marta Kubera; Władysław Lasoń; Małgorzata Filip; Agnieszka Basta-Kaim

Several lines of evidence indicate that adverse experience in early life may be a triggering factor for pathological inflammatory processes and lead to the development of depression. Fractalkine (CX3CL1), a chemokine, plays an important role not only in the migration, differentiation and proliferation of neuronal and glial cells but also in the regulation of neuronal-microglial signaling and the production of pro-inflammatory factors. In the present study, we examined the impact of a prenatal stress procedure on the expression of fractalkine in the hippocampus and frontal cortex of young and adult male rats. Furthermore, we measured the age-dependent effect of stress during pregnancy on the expression of pro-inflammatory factors IL-1β, IL-18, TNF-α, IL-6, and CCL2 in both brain structures. Next, to illustrate the link between fractalkine signaling and the behavioral and biochemical changes induced by prenatal stress, adult prenatally stressed offspring were injected intracerebroventricularly (icv) with exogenous fractalkine. We reported that prenatal stress leads to long-lasting deficits in fractalkine signaling and enhanced inflammatory activation. The study demonstrates that icv administration of fractalkine attenuates the behavioural changes evoked by prenatal stress procedure in adult animals. Moreover, fractalkine administration, exhibits anti-inflammatory action, mainly in the frontal cortex of adult prenatally stressed rats. The effect of fractalkine is related to inhibition of NLRP3 inflammasome. However, its action on the other members of NOD-like receptor family (NLR) cannot be excluded. These findings provide new in vivo evidence that the behavioral and inflammatory disturbances observed in adult prenatally stressed rats may be related to long-lasting malfunctions in fractalkine signaling.

Collaboration


Dive into the Joanna Ślusarczyk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ewa Trojan

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Marta Kubera

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katarzyna Chamera

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ewa Szczęsny

Polish Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge