Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joanne Bero is active.

Publication


Featured researches published by Joanne Bero.


Journal of Pharmacy and Pharmacology | 2009

Antimalarial compounds isolated from plants used in traditional medicine

Joanne Bero; Michel Frederich; Joëlle Quetin-Leclercq

OBJECTIVES This review covers the compounds with antiplasmodial activity isolated from plants published from 2005 to the end of 2008, organized according to their phytochemical classes. Details are given for substances with IC50 values < or = 11 microm. KEY FINDINGS Malaria is a major parasitic disease in many tropical and subtropical regions and is responsible for more than 1 million deaths each year in Africa. The rapid spread of resistance encourages the search for new active compounds. Nature and particularly plants used in traditional medicine are a potential source of new antimalarial drugs as they contain molecules with a great variety of structures and pharmacological activities. SUMMARY A large number of antimalarial compounds with a wide variety of structures have been isolated from plants and can play a role in the development of new antimalarial drugs. Ethnopharmacological approaches appear to be a promising way to find plant metabolites that could be used as templates for designing new derivatives with improved properties.


Journal of Ethnopharmacology | 2009

In vitro antiplasmodial activity of plants used in Benin in traditional medicine to treat malaria.

Joanne Bero; Habib Ganfon; Marie-Caroline Jonville; Michel Frederich; Fernand Gbaguidi; Patrick DeMol; Mansourou Moudachirou; Joëlle Quetin-Leclercq

AIM OF THE STUDY The aim of the study was to evaluate the in vitro antiplasmodial activity of crude extracts of 12 plant species traditionally used in Benin for the treatment of malaria in order to validate their use. MATERIALS AND METHODS For each species, dichloromethane, methanol and total aqueous extracts were tested. The antiplasmodial activity of extracts was evaluated using the measurement of the plasmodial lactate dehydrogenase activity on chloroquine-sensitive (3D7) and resistant (W2) strains of Plasmodium falciparum. The selectivity of the different extracts was evaluated using the MTT test on J774 macrophage-like murine cells and WI38 human normal fibroblasts. RESULTS The best growth inhibition of both strains of Plasmodium falciparum was observed with the dichloromethane extracts of Acanthospermum hispidum DC. (Asteraceae) (IC(50)=7.5 microg/ml on 3D7 and 4.8 microg/ml on W2), Keetia leucantha (K. Krause) Bridson (syn. Plectronia leucantha Krause) (Rubiaceae) leaves and twigs (IC(50)=13.8 and 11.3 microg/ml on 3D7 and IC(50)=26.5 and 15.8 microg/ml on W2, respectively), Carpolobia lutea G.Don. (Polygalaceae) (IC(50)=19.4 microg/ml on 3D7 and 8.1 microg/ml on W2) and Strychnos spinosa Lam. (Loganiaceae) leaves (IC(50)=15.6 microg/ml on 3D7 and 8.9 microg/ml on W2). All these extracts had a low cytotoxicity. CONCLUSION Our study gives some justifications for the traditional uses of some investigated plants.


Journal of Ethnopharmacology | 2011

In vitro antitrypanosomal and antileishmanial activity of plants used in Benin in traditional medicine and bio-guided fractionation of the most active extract

Joanne Bero; Véronique Hannaert; Gabrielle Chataigné; Marie-France Herent; Joëlle Quetin-Leclercq

ETHNOPHARMACOLOGICAL RELEVANCE The aim of the study was to evaluate the in vitro antitrypanosomal and antileishmanial activity of crude extracts of 10 plant species traditionally used in Benin to treat parasitic infections. MATERIALS AND METHODS For each species, dichloromethane, methanol and aqueous extracts were tested. Their antitrypanosomal and antileishmanial activities were evaluated in vitro on Trypanosoma brucei brucei (strain 427) (Tbb) and on promastigotes of Leishmania mexicana mexicana (MHOM/BZ/84/BEL46) (Lmm). RESULTS The best growth inhibition was observed with the dichloromethane extracts of aerial parts of Acanthospermum hispidum DC. (Asteraceae) (IC(50)=14.5 μg/ml on Tbb and 11.1 μg/ml on Lmm), twigs of Keetia leucantha (K. Krause) Bridson (syn. Plectronia leucantha Krause) (IC(50)=5.8 μg/ml on Tbb), aerial parts of Byrsocarpus coccineus Schumach. & Thonn (syn. Rourea coccinea (Schumach. & Thonn.) Hook.f.) (IC(50)=14.7 μg/ml on Tbb) and aerial parts of Carpolobia lutea G.Don. (IC(50)=18.3 μg/ml on Tbb). All these extracts had a low cytotoxicity. It is not the case for the methanolic and water extracts of roots of Anchomanes difformis (Blume) Engl. (IC(50)=14.7 and 13.8 μg/ml on Tbb) which were toxic at the same concentration range on WI38, human cells. A bio-guided fractionation of the most active extract of Keetia leucantha allowed to identify oleanolic acid and ursolic acid as responsible for the observed activities. CONCLUSION Our study gives some justification for antiparasitic activity of some investigated plants.


Journal of Ethnopharmacology | 2014

Chemical composition, cytotoxicity and in vitro antitrypanosomal and antiplasmodial activity of the essential oils of four Cymbopogon species from Benin.

Salomé Kpoviessi; Joanne Bero; Pierre Agbani; Fernand Gbaguidi; Bénédicta Kpadonou-Kpoviessi; Brice Sinsin; Georges C. Accrombessi; Michel Frederich; Mansourou Moudachirou; Joëlle Quetin-Leclercq

ETHNOPHARMACOLOGICAL RELEVANCE Cymbopogon species are largely used in folk medicine for the treatment of many diseases some of which related to parasitical diseases as fevers and headaches. As part of our research on antiparasitic essential oils from Beninese plants, we decided to evaluate the in vitro antiplasmodial and antitrypanosomal activities of essential oils of four Cymbopogon species used in traditional medicine as well as their cytotoxicity. MATERIALS AND METHODS The essential oils of four Cymbopogon species Cymbopogon citratus (I), Cymbopogon giganteus (II), Cymbopogon nardus (III) and Cymbopogon schoenantus (IV) from Benin obtained by hydrodistillation were analysed by GC/MS and GC/FID and were tested in vitro against Trypanosoma brucei brucei and Plasmodium falciparum respectively for antitrypanosomal and antiplasmodial activities. Cytotoxicity was evaluated in vitro against Chinese Hamster Ovary (CHO) cells and the human non cancer fibroblast cell line (WI38) through MTT assay to evaluate the selectivity. RESULTS All tested oils showed a strong antitrypanosomal activity with a good selectivity. Sample II was the most active against Trypanosoma brucei brucei and could be considered as a good candidate. It was less active against Plasmodium falciparum. Samples II, III and IV had low or no cytotoxicity, but the essential oil of Cymbopogon citratus (I), was toxic against CHO cells and moderately toxic against WI38 cells and needs further toxicological studies. Sample I (29 compounds) was characterised by the presence as main constituents of geranial, neral, β-pinene and cis-geraniol; sample II (53 compounds) by trans-p-mentha-1(7),8-dien-2-ol, trans-carveol, trans-p-mentha-2,8-dienol, cis-p-mentha-2,8-dienol, cis-p-mentha-1(7),8-dien-2-ol, limonene, cis-carveol and cis-carvone; sample III (28 compounds) by β-citronellal, nerol, β-citronellol, elemol and limonene and sample IV (41 compounds) by piperitone, (+)-2-carene, limonene, elemol and β-eudesmol. CONCLUSIONS Our study shows that essential oils of Cymbopogon genus can be a good source of antitrypanosomal agents. This is the first report on the activity of these essential oils against Trypanosoma brucei brucei, Plasmodium falciparum and analysis of their cytotoxicity.


Journal of Ethnopharmacology | 2012

Antiparasitic activities of two sesquiterpenic lactones isolated from Acanthospermum hispidum D.C.

Habib Ganfon; Joanne Bero; Alembert T. Tchinda; Fernand Gbaguidi; Joachim Gbenou; Mansourou Moudachirou; Michel Frederich; Joëlle Quetin-Leclercq

ETHNOPHARMACOLOGICAL RELEVANCE Aerial parts of Acanthospermum hispidum D.C. are often used by traditional healers in Benin for various diseases and especially for malaria. AIM OF THE STUDY To identify active compounds from extracts of Acanthospermum hispidum D.CV. leaves previously shown to possess antimalarial properties and analyse in vivo activity and toxicity of crude extracts. MATERIALS AND METHODS Compounds were isolated from aerial part of Acanthospermum hispidum D.C. and structurally elucidated using extensive spectroscopic analysis. Antiplasmodial activity was evaluated in vitro against a chloroquine-sensitive strain of Plasmodium falciparum (3D7) using the measurement of the plasmodial lactate dehydrogenase activity and in vivo against Plasmodium berghei berghei by the 4-day suppressive test. Selectivity of extract and purified compounds on Plasmodium parasites were evaluated by using MTT test on J774 macrophage like murine cells and WI38 human normal fibroblasts and also against two other parasites: Trypanosoma brucei brucei and Leishmania mexicana mexicana. Acute and sub-acute toxicities of a crude extract were evaluated on mice. RESULTS Two known sesquiterpenic lactones were isolated: 1 (15-acetoxy-8β-[(2-methylbutyryloxy)]-14-oxo-4,5-cis-acanthospermolide) and 2 (9α-acetoxy-15-hydroxy-8β-(2-methylbutyryloxy)-14-oxo-4,5-trans-acanthospermolide). 1 and 2 showed in vitro antiplasmodial activity against the chloroquine-sensitive strain (3D7) with IC(50) of 2.9±0.5 and 2.23±0.09μM respectively. Only 2 showed a high selectivity index (SI: 18.4) on Plasmodium compared to cytotoxicity against human fibroblasts cell line (WI38). 1 and 2 also showed interesting antiparasitic activities in vitro against Trypanosoma brucei brucei (IC(50) of 2.45±0.49 and 6.36±1.42μM respectively) and Leishmania mexicana mexicana (IC(50) of 0.94±0.05 and 2.54±0.19μM respectively). Furthermore, crude acidic water extract and fractions containing one of the two isolated compounds displayed a weak in vivo antimalarial activity against Plasmodium berghei berghei with a long half-life causing a delayed effect. In vivo acute (2000mg/kg) and sub-acute (1000mg/kg) toxicity tests on the crude acidic water extract did not show toxicity. CONCLUSION Crude acidic water extract, fractions and pure isolated compounds from Acanthospermum hispidum showed promising in vitro antiplasmodial activity. Despite our study did not show in vivo acute and subacute toxicities of the crude acidic water extract, its weak in vivo antimalarial activity and the in vitro cytotoxicity of pure compounds and enriched extracts containing 1 and 2 indicate that the aerial parts of Acanthospermum hispidum should be used with caution for malaria treatments.


Phytomedicine | 2013

Antitrypanosomal compounds from the essential oil and extracts of Keetia leucantha leaves with inhibitor activity on Trypanosoma brucei glyceraldehyde-3-phosphate dehydrogenase

Joanne Bero; Claire Beaufay; Véronique Hannaert; Marie-France Herent; Paulus Michels; Joëlle Quetin-Leclercq

Keetia leucantha is a West African tree used in traditional medicine to treat several diseases among which parasitic infections. The dichloromethane extract of leaves was previously shown to possess growth-inhibitory activities on Plasmodium falciparum, Trypanosoma brucei brucei and Leishmania mexicana mexicana with low or no cytotoxicity (>100 μg/ml on human normal fibroblasts) (Bero et al. 2009, 2011). In continuation of our investigations on the antitrypanosomal compounds from this dichloromethane extract, we analyzed by GC-FID and GC-MS the essential oil of its leaves obtained by hydrodistillation and the major triterpenic acids in this extract by LC-MS. Twenty-seven compounds were identified in the oil whose percentages were calculated using the normalization method. The essential oil, seven of its constituents and the three triterpenic acids were evaluated for their antitrypanosomal activity on Trypanosoma brucei brucei bloodstream forms (Tbb BSF) and procyclic forms (Tbb PF) to identify an activity on the glycolytic process of trypanosomes. The oil showed an IC(50) of 20.9 μg/ml on Tbb BSF and no activity was observed on Tbb PF. The best antitrypanosomal activity was observed for ursolic acid with IC(50) of 2.5 and 6.5 μg/ml respectively on Tbb BSF and Tbb PF. The inhibitory activity on a glycolytic enzyme of T. brucei, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), was also evaluated for betulinic acid, olenaolic acid, ursolic acid, phytol, α-ionone and β-ionone. The three triterpenic acids and β-ionone showed inhibitory activities on GAPDH with oleanolic acid being the most active with an inhibition of 72.63% at 20 μg/ml. This paper reports for the first time the composition and antitrypanosomal activity of the essential oil of Keetia leucantha. Several of its constituents and three triterpenic acids present in the dichloromethane leaves extract showed a higher antitrypanosomal activity on bloodstream forms of Tbb as compared to procyclic forms, namely geranyl acetone, phytol, α-ionone, β-ionone, ursolic acid, oleanolic acid and betulinic acid. The four last compounds were proven to be inhibitors of trypanosomal GAPDH, which may in part explain these antitrypanosomal activities.


Planta Medica | 2011

Natural products published in 2009 from plants traditionally used to treat malaria

Joanne Bero; Joëlle Quetin-Leclercq

Malaria is a major parasitic disease and is responsible for almost one million deaths each year in Africa. There is an urgent need to discover new active compounds. Nature and particularly plants are a potential source of new antimalarial drugs since they contain a quantity of metabolites with a great variety of structures and pharmacological activities. This review covers the compounds with antiplasmodial activity isolated from plants which have been published during 2009 organized according to their phytochemical classes. Details are given for substances with IC₅₀ values ≤ 11 µM. Sixty-seven references are identified.


Journal of Ethnopharmacology | 2013

In vivo antimalarial activity of Keetia leucantha twigs extracts and in vitro antiplasmodial effect of their constituents

Joanne Bero; Marie-France Herent; Guillermo Schmeda-Hirschmann; Michel Frederich; Joëlle Quetin-Leclercq

ETHNOPHARMACOLOGICAL RELEVANCE The West African tree Keetia leucantha (Rubiaceae) is used in traditional medicine in Benin to treat malaria. The twigs dichloromethane extract was previously shown to inhibit in vitro Plasmodium falciparum growth with no cytotoxicity (>100µg/ml on human normal fibroblasts). MATERIALS AND METHODS The dichloromethane and aqueous extracts of twigs of K. leucantha were evaluated in vivo against Plasmodium berghei NK 173 by the 4-day suppressive test and in vitro against a chloroquine-sensitive strain of Plasmodium falciparum (3D7) using the measurement of the plasmodial lactate dehydrogenase activity. Bioguided fractionations were realized and compounds were structurally elucidated using extensive spectroscopic analysis. RESULTS The in vivo antimalarial activity of K. leucantha dichloromethane and aqueous twigs extracts were assessed in mice at the dose of 200mg/kg/day. Both extracts exhibited significant effect in inhibiting parasite growth by 56.8% and 53.0% (p<0.0001) on day 7-postinfection. An LC-MS analysis and bioguided fractionations on the twigs dichloromethane extract led to the isolation and structural determination of scopoletin (1), stigmasterol (2), three phenolic compounds: vanillin (3), hydroxybenzaldehyde (4) and ferulaldehyde (5), eight triterpenic esters (6-13), oleanolic acid and ursolic acid. The antiplasmodial activity of the mixture of the eight triterpenic esters showed an antiplasmodial activity of 1.66 ± 0.54 µg/ml on the 3D7 strain, and the same range of activity was observed for isolated isomers mixtures. CONCLUSIONS This is the first report on the in vivo activity of K. leucantha extracts, the isolation of thirteen compounds and analysis of their antiplasmodial activity. The results obtained may partially justify the traditional use of K. leucantha to treat malaria in Benin.


European Journal of Medicinal Chemistry | 2013

Antiparasitic hybrids of Cinchona alkaloids and bile acids.

Aurélie Leverrier; Joanne Bero; Michel Frederich; Joëlle Quetin-Leclercq; Jorge A. Palermo

A series of 16 hybrids of Cinchona alkaloids and bile acids (4a-h, 5a-h) was prepared by means of a Barton-Zard decarboxylation reaction. Quinine, quinidine, cinchonine and cinchonidine were functionalized at position C-2 of the quinoline nucleus by radical attack of a norcholane substituent. The newly synthesized hybrids were evaluated in vitro for their antitrypanosomal, antileishmanial and antiplasmodial activities, along with their cytotoxicity against WI38, a normal human fibroblast cell line. Seven compounds (4d, 4f, 4h, 5b, 5d, 5f, 5h) showed promising trypanocidal activity with IC₅₀ values in the same range as the commercial drug suramine. Moreover all the 16 hybrids showed antiplasmodial activity (IC₅₀ ≤ 6 μg/ml), particularly those containing a nor-chenodeoxycholane moiety (4b, 4d, 4f, 4h, 5b, 5d, 5f, 5h) with IC₅₀ values comparable to those of the natural alkaloids, and selectivity indices in the range of 5.6-15.7.


Journal of Ethnopharmacology | 2014

In vitro antitrypanosomal and antiplasmodial activities of crude extracts and essential oils of Ocimum gratissimum Linn from Benin and influence of vegetative stage

Bénédicta G H Kpadonou Kpoviessi; Salomé Kpoviessi; Eléonore Yayi Ladekan; Fernand Gbaguidi; Michel Frederich; Mansourou Moudachirou; Joëlle Quetin-Leclercq; Georges C. Accrombessi; Joanne Bero

ETHNOPHARMACOLOGICAL RELEVANCE Different parts of Ocimum gratissimum Linn are largely used in folk medicine for the treatment of many diseases, some of which related to parasitical infections as fevers and headaches. In order to validate their use and to clarify the plant part which possesses the best antiparasitic properties, we decided to evaluate the in vitro antiplasmodial and antitrypanosomal activities of essential oils and crude extracts from leaves, stems and seeds of Ocimum gratissimum as well as their cytotoxicity. MATERIALS AND METHODS The essential oils and ethanol crude extracts of leaves and stems of Ocimum gratissimum from Benin, were obtained in pre and full flowering stages. Seeds obtained only in full flowering stage, were also extracted. The oils were isolated by hydrodistillation and analyzed by GC/MS and GC/FID. Extracts and essential oils were tested in vitro against Trypanosoma brucei brucei and Plasmodium falciparum. Cytotoxicity was evaluated in vitro against Chinese Hamster Ovary (CHO) cells and the human non cancer fibroblast cell line (WI38) through MTT assay to evaluate the selectivity and toxicity was assessed against Artemia salina Leach. RESULTS The essential oils and non-volatile crude extracts of Ocimum gratissimum were more active on Trypanosoma brucei brucei than on Plasmodium falciparum (3D7). This activity varies according to the vegetative stage (pre and full flowering) and the plant part (seeds, stems and leaves) extracted. The best growth inhibition of Trypanosoma brucei brucei was observed with ethanol crude extracts of leaves (IC50=1.66 ± 0.48 μg/mL) and seeds (IC50=1.29 ± 0.42 μg/mL) in full flowering stage with good selectivity (SI>10). The chemical composition of the essential oil from aerial parts (47 compounds), characterized by the presence as main constituents of p-cymene, thymol, γ-terpinene, β-myrcene and α-thujene, depends on the vegetative stage. The oil contained some minor compounds such as myrcene (IC50=2.24 ± 0.27μg/mL), citronellal (IC50=2.76 ± 1.55μg/mL), limonene (IC50=4.24 ± 2.27μg/mL), with good antitrypanosomal activities. These oils and crude extracts were not toxic against Artemia salina Leach and had a low cytotoxicity except leaves and seeds ethanol extracts obtained in full flowering which showed toxicity against CHO and WI38 cells. CONCLUSIONS Our study shows that ethanol crude extracts of leaves and seeds of Ocimum gratissimum in full flowering stage can be a good source of antitrypanosomal agents. This is the first report about the relation between the plant part extracted, the vegetative stage of the plant, the antitrypanosomal and antiplasmodial activities and the cytotoxicity of essential oils and non-volatile extracts of Ocimum gratissimum from Benin.

Collaboration


Dive into the Joanne Bero's collaboration.

Top Co-Authors

Avatar

Joëlle Quetin-Leclercq

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fernand Gbaguidi

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claire Beaufay

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Salomé Kpoviessi

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Marie-France Herent

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Véronique Hannaert

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

Jacques H. Poupaert

Université catholique de Louvain

View shared research outputs
Researchain Logo
Decentralizing Knowledge