Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joanne E. Hughes is active.

Publication


Featured researches published by Joanne E. Hughes.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Comparative genomics of the lactic acid bacteria

Kira S. Makarova; A. Slesarev; Yuri I. Wolf; Alexander V. Sorokin; Boris Mirkin; Eugene V. Koonin; A. R. Pavlov; N. V. Pavlova; V. N. Karamychev; N. Polouchine; V. V. Shakhova; Igor V. Grigoriev; Y. Lou; D. Rohksar; Susan Lucas; K. Huang; David Goodstein; Trevor Hawkins; V. Plengvidhya; Dennis L. Welker; Joanne E. Hughes; Y. Goh; Andrew K. Benson; Kathleen A. Baldwin; Ju-Hoon Lee; I. Díaz-Muñiz; B. Dosti; V. Smeianov; W. Wechter; Ravi D. Barabote

Lactic acid-producing bacteria are associated with various plant and animal niches and play a key role in the production of fermented foods and beverages. We report nine genome sequences representing the phylogenetic and functional diversity of these bacteria. The small genomes of lactic acid bacteria encode a broad repertoire of transporters for efficient carbon and nitrogen acquisition from the nutritionally rich environments they inhabit and reflect a limited range of biosynthetic capabilities that indicate both prototrophic and auxotrophic strains. Phylogenetic analyses, comparison of gene content across the group, and reconstruction of ancestral gene sets indicate a combination of extensive gene loss and key gene acquisitions via horizontal gene transfer during the coevolution of lactic acid bacteria with their habitats.


Applied and Environmental Microbiology | 2007

Comparative High-Density Microarray Analysis of Gene Expression during Growth of Lactobacillus helveticus in Milk versus Rich Culture Medium

Vladimir V. Smeianov; Patrick Wechter; Jeffery R. Broadbent; Joanne E. Hughes; Beatriz T. Rodríguez; Tove K. Christensen; Ylva Ardö; James L. Steele

ABSTRACT Lactobacillus helveticus CNRZ32 is used by the dairy industry to modulate cheese flavor. The compilation of a draft genome sequence for this strain allowed us to identify and completely sequence 168 genes potentially important for the growth of this organism in milk or for cheese flavor development. The primary aim of this study was to investigate the expression of these genes during growth in milk and MRS medium by using microarrays. Oligonucleotide probes against each of the completely sequenced genes were compiled on maskless photolithography-based DNA microarrays. Additionally, the entire draft genome sequence was used to produce tiled microarrays in which noninterrupted sequence contigs were covered by consecutive 24-mer probes and associated mismatch probe sets. Total RNA isolated from cells grown in skim milk or in MRS to mid-log phase was used as a template to synthesize cDNA, followed by Cy3 labeling and hybridization. An analysis of data from annotated gene probes identified 42 genes that were upregulated during the growth of CNRZ32 in milk (P < 0.05), and 25 of these genes showed upregulation after applying Bonferronis adjustment. The tiled microarrays identified numerous additional genes that were upregulated in milk versus MRS. Collectively, array data showed the growth of CNRZ32 in milk-induced genes encoding cell-envelope proteinases, oligopeptide transporters, and endopeptidases as well as enzymes for lactose and cysteine pathways, de novo synthesis, and/or salvage pathways for purines and pyrimidines and other functions. Genes for a hypothetical phosphoserine utilization pathway were also differentially expressed. Preliminary experiments indicate that cheese-derived, phosphoserine-containing peptides increase growth rates of CNRZ32 in a chemically defined medium. These results suggest that phosphoserine is used as an energy source during the growth of L. helveticus CNRZ32.


Applied and Environmental Microbiology | 2005

Identification of Endopeptidase Genes from the Genomic Sequence of Lactobacillus helveticus CNRZ32 and the Role of These Genes in Hydrolysis of Model Bitter Peptides

Vidya R. Sridhar; Joanne E. Hughes; Dennis L. Welker; Jeffery R. Broadbent; James L. Steele

ABSTRACT Genes encoding three putative endopeptidases were identified from a draft-quality genome sequence of Lactobacillus helveticus CNRZ32 and designated pepO3, pepF, and pepE2. The ability of cell extracts from Escherichia coli DH5α derivatives expressing CNRZ32 endopeptidases PepE, PepE2, PepF, PepO, PepO2, and PepO3 to hydrolyze the model bitter peptides, β-casein (β-CN) (f193-209) and αS1-casein (αS1-CN) (f1-9), under cheese-ripening conditions (pH 5.1, 4% NaCl, and 10°C) was examined. CNRZ32 PepO3 was determined to be a functional paralog of PepO2 and hydrolyzed both peptides, while PepE and PepF had unique specificities towards αS1-CN (f1-9) and β-CN (f193-209), respectively. CNRZ32 PepE2 and PepO did not hydrolyze either peptide under these conditions. To demonstrate the utility of these peptidases in cheese, PepE, PepO2, and PepO3 were expressed in Lactococcus lactis, a common cheese starter, using a high-copy vector pTRKH2 and under the control of the pepO3 promoter. Cell extracts of L. lactis derivatives expressing these peptidases were used to hydrolyze β-CN (f193-209) and αS1-CN (f1-9) under cheese-ripening conditions in single-peptide reactions, in a defined peptide mix, and in Cheddar cheese serum. Peptides αS1-CN (f1-9), αS1-CN (f1-13), and αS1-CN (f1-16) were identified from Cheddar cheese serum and included in the defined peptide mix. Our results demonstrate that in all systems examined, PepO2 and PepO3 had the highest activity with β-CN (f193-209) and αS1-CN (f1-9). Cheese-derived peptides were observed to affect the activity of some of the enzymes examined, underscoring the importance of incorporating such peptides in model systems. These data indicate that L. helveticus CNRZ32 endopeptidases PepO2 and PepO3 are likely to play a key role in this strains ability to reduce bitterness in cheese.


Applied and Environmental Microbiology | 2004

Overexpression of Lactobacillus casei D-hydroxyisocaproic acid dehydrogenase in Cheddar cheese

Jeffery R. Broadbent; Sanjay Gummalla; Joanne E. Hughes; M.E. Johnson; Scott A. Rankin; M.A. Drake

ABSTRACT Metabolism of aromatic amino acids by lactic acid bacteria is an important source of off-flavor compounds in Cheddar cheese. Previous work has shown that α-keto acids produced from Trp, Tyr, and Phe by aminotransferase enzymes are chemically labile and may degrade spontaneously into a variety of off-flavor compounds. However, dairy lactobacilli can convert unstable α-keto acids to more-stable α-hydroxy acids via the action of α-keto acid dehydrogenases such as d-hydroxyisocaproic acid dehydrogenase. To further characterize the role of this enzyme in cheese flavor, the Lactobacillus caseid-hydroxyisocaproic acid dehydrogenase gene was cloned into the high-copy-number vector pTRKH2 and transformed into L. casei ATCC 334. Enzyme assays confirmed that α-keto acid dehydrogenase activity was significantly higher in pTRKH2:dhic transformants than in wild-type cells. Reduced-fat Cheddar cheeses were made with Lactococcus lactis starter only, starter plus L. casei ATCC 334, and starter plus L. casei ATCC 334 transformed with pTRKH2:dhic. After 3 months of aging, the cheese chemistry and flavor attributes were evaluated instrumentally by gas chromatography-mass spectrometry and by descriptive sensory analysis. The culture system used significantly affected the concentrations of various ketones, aldehydes, alcohols, and esters and one sulfur compound in cheese. Results further indicated that enhanced expression of d-hydroxyisocaproic acid dehydrogenase suppressed spontaneous degradation of α-keto acids, but sensory work indicated that this effect retarded cheese flavor development.


Applied and Environmental Microbiology | 2008

Phenotypic and genotypic analysis of amino acid auxotrophy in Lactobacillus helveticus CNRZ 32.

Jason K. Christiansen; Joanne E. Hughes; Dennis L. Welker; Beatriz T. Rodríguez; James L. Steele; Jeff R. Broadbent

ABSTRACT The conversion of amino acids into volatile and nonvolatile compounds by lactic acid bacteria in cheese is thought to represent the rate-limiting step in the development of mature flavor and aroma. Because amino acid breakdown by microbes often entails the reversible action of enzymes involved in biosynthetic pathways, our group investigated the genetics of amino acid biosynthesis in Lactobacillus helveticus CNRZ 32, a commercial cheese flavor adjunct that reduces bitterness and intensifies flavor notes. Most lactic acid bacteria are auxotrophic for several amino acids, and L. helveticus CNRZ 32 requires 14 amino acids. The reconstruction of amino acid biosynthetic pathways from a draft-quality genome sequence for L. helveticus CNRZ 32 revealed that amino acid auxotrophy in this species was due primarily to gene absence rather than point mutations, insertions, or small deletions, with good agreement between gene content and phenotypic amino acid requirements. One exception involved the phenotypic requirement for Asp (or Asn), which genome predictions suggested could be alleviated by citrate catabolism. This prediction was confirmed by the growth of L. helveticus CNRZ 32 after the addition of citrate to a chemically defined medium that lacked Asp and Asn. Genome analysis also predicted that L. helveticus CNRZ 32 possessed ornithine decarboxylase activity and would therefore catalyze the conversion of ornithine to putrescine, a volatile biogenic amine. However, experiments to confirm ornithine decarboxylase activity in L. helveticus CNRZ 32 by the use of several methods were unsuccessful, which indicated that this bacterium likely does not contribute to putrescine production in cheese.


Applied and Environmental Microbiology | 2007

Role of Cystathionine β-Lyase in Catabolism of Amino Acids to Sulfur Volatiles by Genetic Variants of Lactobacillus helveticus CNRZ 32

Won-Jae Lee; Dattatreya S. Banavara; Joanne E. Hughes; Jason K. Christiansen; James L. Steele; Jeffery R. Broadbent; S.A. Rankin

ABSTRACT Catabolism of sulfur-containing amino acids plays an important role in the development of cheese flavor. During ripening, cystathionine β-lyase (CBL) is believed to contribute to the formation of volatile sulfur compounds (VSCs) such as methanethiol and dimethyl disulfide. However, the role of CBL in the generation of VSCs from the catabolism of specific sulfur-containing amino acids is not well characterized. The objective of this study was to investigate the role of CBL in VSC formation by Lactobacillus helveticus CNRZ 32 using genetic variants of L. helveticus CNRZ 32 including the CBL-null mutant, complementation of the CBL-null mutant, and the CBL overexpression mutant. The formation of VSCs from methionine, cystathionine, and cysteine was determined in a model system using gas chromatography-mass spectrometry with solid-phase microextraction. With methionine as a substrate, CBL overexpression resulted in higher VSC production than that of wild-type L. helveticus CNRZ 32 or the CBL-null mutant. However, there were no differences in VSC production between the wild type and the CBL-null mutant. With cystathionine, methanethiol production was detected from the CBL overexpression variant and complementation of the CBL-null mutant, implying that CBL may be involved in the conversion of cystathionine to methanethiol. With cysteine, no differences in VSC formation were observed between the wild type and genetic variants, indicating that CBL does not contribute to the conversion of cysteine.


Molecular and Cellular Biology | 1994

Plasmid maintenance functions encoded on Dictyostelium discoideum nuclear plasmid Ddp1.

Joanne E. Hughes; Hidenori Kiyosawa; Dennis L. Welker

All of the plasmid-carried genes expressed during vegetative growth are essential for long-term maintenance of plasmid Ddp1 in the nucleus of Dictyostelium discoideum. Deletion of Ddp1 genes expressed only during development had no detectable effect on plasmid maintenance. Deletion of vegetatively expressed genes, either singly or in pairs, resulted in (i) a rapid loss of plasmid from cells grown in the absence of selection for plasmid retention, (ii) variation in the proportion of monomer to multimer forms of the plasmid molecules, and/or (iii) abnormalities in plasmid copy number. At least two plasmid-encoded gene products influence patterns of expression of plasmid genes.


Plasmid | 1989

Copy number control and compatibility of nuclear plasmids in Dictyostelium discoideum.

Joanne E. Hughes; Dennis L. Welker

Copy number of the endogenous nuclear plasmids of Dictyostelium discoideum is a plasmid-specific trait. Copy number is stable over time, is constant relative to ploidy level, is independent of host cell genetic background, and is independent of the presence of a second unrelated plasmid in the same nucleus. Unrelated plasmids are compatible with one another within a single nucleus. Pairwise combinations of Ddp1, Ddp2, and Ddp5 were stably maintained over many generations in the absence of selection. In contrast, one of the D. discoideum plasmids (Ddp2) was incompatible with a recombinant plasmid derived from it (p7d2). In the absence of selection for retention of p7d2, transformants contain either one or the other but not both plasmids. The plasmids are stably maintained in host cells with differing genetic backgrounds, although plasmid-free colonies were detected at a frequency of about 1-2% in populations of some strains after 50 generations growth following a previous cloning.


Fems Microbiology Letters | 2015

High efficiency electrotransformation of Lactobacillus casei

Dennis L. Welker; Joanne E. Hughes; James L. Steele; Jeff R. Broadbent

We investigated whether protocols allowing high efficiency electrotransformation of other lactic acid bacteria were applicable to five strains of Lactobacillus casei (12A, 32G, A2-362, ATCC 334 and BL23). Addition of 1% glycine or 0.9 M NaCl during cell growth, limitation of the growth of the cell cultures to OD600 0.6-0.8, pre-electroporation treatment of cells with water or with a lithium acetate (100 mM)/dithiothreitol (10 mM) solution and optimization of electroporation conditions all improved transformation efficiencies. However, the five strains varied in their responses to these treatments. Transformation efficiencies of 10(6) colony forming units μg(-1) pTRKH2 DNA and higher were obtained with three strains which is sufficient for construction of chromosomal gene knock-outs and gene replacements.


Molecular Genetics and Genomics | 1989

Gene amplification associated with the dominant cob-354 cobalt resistance trait in Dictyostelium discoideum

Steven L. Jensen; Hassan Ashktorab; Joanne E. Hughes; Dennis L. Welker

SummaryA DNA amplification is correlated with the dominant, unstable cob-354 cobalt resistance trait in the cellular slime mold, Dictyostelium discoideum. The amplified DNA is present as about 50 copies of an extrachromosomal element. Cells grown under nonselective conditions in the absence of cobalt ions lose both the cobalt resistance trait and all extrachromosomal copies of the amplified DNA. The amplified DNA is transferrable to new genetic backgrounds by parasexual genetic crosses. These results explain the inability to map the cob-354 trait to a linkage group. The chromosomal origin of the amplified DNA is group III or VI. Thus the resistance trait appears to be independent of the previously known cobalt resistance locus, cobA, which maps to group VII. A developmental defect involving the production of multiply-tipped aggregates that do not complete fruiting body formation also is correlated with the presence of the amplified DNA.

Collaboration


Dive into the Joanne E. Hughes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

James L. Steele

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ylva Ardö

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Dattatreya S. Banavara

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge