Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joanne E. Murphy-Ullrich is active.

Publication


Featured researches published by Joanne E. Murphy-Ullrich.


Cell | 1998

Thrombospondin-1 Is a Major Activator of TGF-β1 In Vivo

Susan E. Crawford; Veronica Stellmach; Joanne E. Murphy-Ullrich; Solange M. F. Ribeiro; Jack Lawler; Richard O. Hynes; Gregory P. Boivin; Noel P. Bouck

The activity of TGF-beta1 is regulated primarily extracellularly where the secreted latent form must be modified to expose the active molecule. Here we show that thrombospondin-1 is responsible for a significant proportion of the activation of TGF-beta1 in vivo. Histological abnormalities in young TGF-beta1 null and thrombospondin-1 null mice were strikingly similar in nine organ systems. Lung and pancreas pathologies similar to those observed in TGF-beta1 null animals could be induced in wild-type pups by systemic treatment with a peptide that blocked the activation of TGF-beta1 by thrombospondin-1. Although these organs produced little active TGF-beta1 in thrombospondin null mice, when pups were treated with a peptide derived from thrombospondin-1 that could activate TGF-beta1, active cytokine was detected in situ, and the lung and pancreatic abnormalities reverted toward wild type.


Cytokine & Growth Factor Reviews | 2000

Activation of latent TGF-β by thrombospondin-1: mechanisms and physiology

Joanne E. Murphy-Ullrich; Maria H. Poczatek

Abstract Regulation of the activation of latent TGF-β is essential for health as too much or too little TGF-β activity can have serious, deleterious consequences. The processes that control conversion of the precursor to the biologically active form of TGF-β in vivo are not well characterized. We have identified a mechanism for the activation of latent TGF-β that involves binding of the secreted and extracellular matrix protein, thrombospondin-1 (TSP-1), to the latent precursor. Specific sequences in TSP-1 and in the precursor portion (the latency associate peptide–LAP) have been determined to be essential for activation of latent TGF-β by TSP-1. It is thought that binding of TSP-1 to the latent complex induces a conformational rearrangement of the LAP in such a manner as to prevent the LAP from conferring latency on the mature domain of TGF-β. A TSP-dependent mechanism of activation may be locally important during wound healing and in post-natal development of epithelial structures. The possible involvement of TSP-1 in TGF-β activation during several disease processes is also discussed.


Journal of Clinical Investigation | 2001

The de-adhesive activity of matricellular proteins: is intermediate cell adhesion an adaptive state?

Joanne E. Murphy-Ullrich

The process of cellular de-adhesion is potentially important for the ability of a cell to participate in morphogenesis and to respond to injurious stimuli. Cellular de-adhesion is induced by the highly regulated matricellular proteins TSP1 and 2, tenascin-C, and SPARC. These proteins induce a rapid transition to an intermediate state of adhesiveness characterized by loss of actin-containing stress fibers and restructuring of the focal adhesion plaque that includes loss of vinculin and alpha-actinin, but not of talin or integrin. This process involves intracellular signaling mediators, which are engaged in response to matrix protein-receptor interactions. Each of these proteins employs different receptors and signaling pathways to achieve this common morphologic endpoint. What is the function of this intermediate adhesive state and what is the physiologic significance of this action of the matricellular proteins? Given that matricellular proteins are expressed in response to injury and during development, one can speculate that the intermediate adhesive state is an adaptive condition that facilitates expression of specific genes that are involved in repair and adaptation. Since cell shape is maintained in weakly adherent cells, this state might induce survival signals to prevent apoptosis due to loss of strong cell adhesion, but yet allow for cell locomotion. The three matricellular proteins considered here might each preferentially facilitate one or more aspects of this adaptive response rather than all of these equally. Currently, we have only preliminary data to support the specific ideas proposed in this article. It will be interesting in the next several years to continue to elucidate the biological roles of the intermediate adhesive state induced by these matricellular proteins. and focal adhesions in a cell that nevertheless maintains a spread, extended morphology and integrin clustering. TSP1, tenascin-C, and SPARC induce the intermediate adhesive state, as shown by the red arrows. The significance of each adhesive state for cell behavior is indicated beneath the cells. The weak adhesive state would be consistent with cells undergoing apoptosis during remodeling or those undergoing cytokinesis. The strong adhesive state is characteristic of a differentiated, quiescent cell, whereas cells in the intermediate adhesive state would include those involved in responding to injury during wound healing or in tissue remodeling during morphogenesis.


Physiological Reviews | 2008

LDL Receptor-Related Protein 1: Unique Tissue-Specific Functions Revealed by Selective Gene Knockout Studies

Anna P. Lillis; Lauren B. Van Duyn; Joanne E. Murphy-Ullrich; Dudley K. Strickland

The LDL receptor-related protein (originally called LRP, but now referred to as LRP1) is a large endocytic receptor that is widely expressed in several tissues. LRP1 is a member of the LDL receptor family that plays diverse roles in various biological processes including lipoprotein metabolism, degradation of proteases, activation of lysosomal enzymes, and cellular entry of bacterial toxins and viruses. Deletion of the LRP1 gene leads to lethality in mice, revealing a critical, but as of yet, undefined role in development. Tissue-specific gene deletion studies reveal an important contribution of LRP1 in the vasculature, central nervous system, macrophages, and adipocytes. Three important properties of LRP1 dictate its diverse role in physiology: 1) its ability to recognize more than 30 distinct ligands, 2) its ability to bind a large number of cytoplasmic adaptor proteins via determinants located on its cytoplasmic domain in a phosphorylation-specific manner, and 3) its ability to associate with and modulate the activity of other transmembrane receptors such as integrins and receptor tyrosine kinases.


Journal of Biological Chemistry | 1999

The activation sequence of thrombospondin-1 interacts with the latency-associated peptide to regulate activation of latent transforming growth factor-beta.

Solange M. F. Ribeiro; Maria H. Poczatek; Stacey Schultz-Cherry; Matteo Villain; Joanne E. Murphy-Ullrich

One of the primary points of regulation of transforming growth factor-β (TGF-β) activity is control of its conversion from the latent precursor to the biologically active form. We have identified thrombospondin-1 as a major physiological regulator of latent TGF-β activation. Activation is dependent on the interaction of a specific sequence in thrombospondin-1 (K412RFK415) with the latent TGF-β complex. Platelet thrombospon-din-1 has TGF-β activity and immunoreactive mature TGF-β associated with it. We now report that the latency-associated peptide (LAP) of the latent TGF-β complex also interacts with thrombospondin-1 as part of a biologically active complex. Thrombospondin·LAP complex formation involves the activation sequence of thrombospondin-1 (KRFK) and a sequence (LSKL) near the amino terminus of LAP that is conserved in TGF-β1–5. The interactions of LAP with thrombospondin-1 through the LSKL and KRFK sequences are important for thrombospondin-mediated activation of latent TGF-β since LSKL peptides can competitively inhibit latent TGF-β activation by thrombospondin or KRFK-containing peptides. In addition, the association of LAP with thrombospondin-1 may function to prevent the re-formation of an inactive LAP·TGF-β complex since thrombospondin-bound LAP no longer confers latency on active TGF-β. The mechanism of TGF-β activation by thrombospondin-1 appears to be conserved among TGF-β isoforms as latent TGF-β2 can also be activated by thrombospondin-1 or KRFK peptides in a manner that is sensitive to inhibition by LSKL peptides.


The FASEB Journal | 2010

Calreticulin: non-endoplasmic reticulum functions in physiology and disease

Leslie I. Gold; Paul Eggleton; Mariya T. Sweetwyne; Lauren B. Van Duyn; Matthew R. Greives; Sara Megumi Naylor; Marek Michalak; Joanne E. Murphy-Ullrich

Calreticulin (CRT), when localized to the endoplasmic reticulum (ER), has important functions in directing proper conformation of proteins and glycoproteins, as well as in homeostatic control of cytosolic and ER calcium levels. There is also steadily accumulating evidence for diverse roles for CRT localized outside the ER, including data suggesting important roles for CRT localized to the outer cell surface of a variety of cell types, in the cytosol, and in the extracellular matrix (ECM). Furthermore, the addition of exogenous CRT rescues numerous CRT‐driven functions, such as adhesion, migration, phagocytosis, and immunoregulatory functions of CRT‐null cells. Recent studies show that topically applied CRT has diverse and profound biological effects that enhance cutaneous wound healing in animal models. This evidence for extracellular bioactivities of CRT has provided new insights into this classically ER‐resident protein, despite a lack of knowledge of how CRT exits from the ER to the cell surface or how it is released into the extracellular milieu. Nonetheless, it has become clear that CRT is a multicompartmental protein that regulates a wide array of cellular responses important in physiological and pathological processes, such as wound healing, the immune response, fibrosis, and cancer.—Gold, L. I., Eggleton, P., Sweetwyne, M. T., Van Duyn, L. B., Greives, M. R., Naylor, S.‐M., Michalak, M., Murphy‐Ullrich, J. E. Calreticulin: non‐endoplamic reticulum functions in physiology and disease. FASEB J. 24, 665–683 (2010). www.fasebj.org


Free Radical Biology and Medicine | 2000

Cell signaling by reactive nitrogen and oxygen species in atherosclerosis.

Rakesh P. Patel; Douglas R. Moellering; Joanne E. Murphy-Ullrich; Hanjoong Jo; Joseph S. Beckman; Victor M. Darley-Usmar

The production of reactive oxygen and nitrogen species has been implicated in atherosclerosis principally as means of damaging low-density lipoprotein that in turn initiates the accumulation of cholesterol in macrophages. The diversity of novel oxidative modifications to lipids and proteins recently identified in atherosclerotic lesions has revealed surprising complexity in the mechanisms of oxidative damage and their potential role in atherosclerosis. Oxidative or nitrosative stress does not completely consume intracellular antioxidants leading to cell death as previously thought. Rather, oxidative and nitrosative stress have a more subtle impact on the atherogenic process by modulating intracellular signaling pathways in vascular tissues to affect inflammatory cell adhesion, migration, proliferation, and differentiation. Furthermore, cellular responses can affect the production of nitric oxide, which in turn can strongly influence the nature of oxidative modifications occurring in atherosclerosis. The dynamic interactions between endogenous low concentrations of oxidants or reactive nitrogen species with intracellular signaling pathways may have a general role in processes affecting wound healing to apoptosis, which can provide novel insights into the pathogenesis of atherosclerosis.


American Journal of Pathology | 1999

Activation of Rat Alveolar Macrophage-Derived Latent Transforming Growth Factor β-1 by Plasmin Requires Interaction with Thrombospondin-1 and its Cell Surface Receptor, CD36

Teshome Yehualaeshet; Robert O'Connor; Julia Green-Johnson; Sabine Mai; Roy L. Silverstein; Joanne E. Murphy-Ullrich; Nasreen Khalil

Transforming growth factor-beta-1 (TGF-beta1) is secreted by cells in a latent form (L-TGF-beta1) noncovalently bound to a latency-associated peptide. Activated alveolar macrophages obtained from rat lungs after bleomycin-induced pulmonary injury released increased amounts of active TGF-beta1 as well as plasmin, a protease, and thrombospondin-1 (TSP-1), a trimeric glycoprotein. Previously we had demonstrated that plasmin was critical to the activation of L-TGF- beta1. In the present study we demonstrated that TSP-1 is also important for the activation of L-TGF- beta1 because the activation can be inhibited by anti-TSP-1 monoclonal antibody. Proteins obtained from alveolar macrophage cell lysates immunoprecipitated with antibodies specific for TSP-1 were identified on immunoblots as LAP and TGF-beta1, indicating that TSP-1/L-TGF-beta1 complexes are present on alveolar macrophages. However, in the presence of plasmin both latency-associated peptide and TGF-beta1 were decreased in the same cell lysates, indicating that L-TGF-beta1 associated with TSP-1 is released by plasmin. Using immunofluorescence and antibodies to TGF-beta1 and CD36, a receptor for TSP-1, there was colocalization of TGF-beta1 with CD36. Because TSP-1 but not TGF-beta1 is a natural ligand for CD36, these findings suggest that the L-TGF-beta1 in a complex with TSP-1 localizes to the macrophage cell surface when TSP-1 interacts with its receptor, CD36. Furthermore, the association of TSP-1/L-TGF-beta1 complex with CD36 is necessary to the activation of L-TGF-beta1 because antibodies to CD36 prevent the colocalization of TGF-beta1 with CD36 as observed by immunofluorescence and inhibit activation of the L-TGF-beta1 by explanted alveolar macrophages. These findings suggest that activation of L-TGF-beta1 by plasmin occurs at the cell surface of activated alveolar macrophages and requires a TSP-1/CD36 interaction.


Journal of Cell Science | 2003

Thrombospondin signaling through the calreticulin/LDL receptor-related protein co-complex stimulates random and directed cell migration.

A. Wayne Orr; Carrie A. Elzie; Dennis F. Kucik; Joanne E. Murphy-Ullrich

The matricellular extracellular matrix protein thrombospondin-1 (TSP1) stimulates focal adhesion disassembly through a sequence (known as the hep I peptide) in its heparin-binding domain. This mediates signaling through a receptor co-complex involving calreticulin and low-density lipoprotein (LDL) receptor-related protein (LRP). We postulate that this transition to an intermediate adhesive state enhances cellular responses to dynamic environmental conditions. Since cell adhesion dynamics affect cell motility, we asked whether TSP1/hep I-induced intermediate adhesion alters cell migration. Using both transwell and Dunn chamber assays, we demonstrate that TSP1 and hep I gradients stimulate endothelial cell chemotaxis. Treatment with focal adhesion-labilizing concentrations of TSP1/hep I in the absence of a gradient enhances endothelial cell random migration, or chemokinesis, associated with an increase in cells migrating, migration speed, and total cellular displacement. Calreticulin-null and LRP-null fibroblasts do not migrate in response to TSP1/hep I, nor do endothelial cells treated with the LRP inhibitor receptor-associated protein (RAP). Furthermore, TSP1/hep I-induced focal adhesion disassembly is associated with reduced chemotaxis to basic fibroblast growth factor (bFGF) but enhanced chemotaxis to acidic (a)FGF, suggesting differential modulation of growth factor-induced migration. Thus, TSP1/hep I stimulation of intermediate adhesion regulates the migratory phenotype of endothelial cells and fibroblasts, suggesting a role for TSP1 in remodeling responses.


Journal of Cell Biology | 2003

Low density lipoprotein receptor–related protein is a calreticulin coreceptor that signals focal adhesion disassembly

Anthony Wayne Orr; Claudio E. Pedraza; Manuel A. Pallero; Carrie A. Elzie; Silvia Goicoechea; Dudley K. Strickland; Joanne E. Murphy-Ullrich

Thrombospondin (TSP) signals focal adhesion disassembly (the intermediate adhesive state) through interactions with cell surface calreticulin (CRT). TSP or a peptide (hep I) of the active site induces focal adhesion disassembly through binding to CRT, which activates phosphoinositide 3-kinase (PI3K) and extracellular signal–related kinase (ERK) through Gαi2 proteins. Because CRT is not a transmembrane protein, it is likely that CRT signals as part of a coreceptor complex. We now show that low density lipoprotein receptor–related protein (LRP) mediates focal adhesion disassembly initiated by TSP binding to CRT. LRP antagonists (antibodies, receptor-associated protein) block hep I/TSP-induced focal adhesion disassembly. LRP is necessary for TSP/hep I signaling because TSP/hep I is unable to stimulate focal adhesion disassembly or ERK or PI3K signaling in fibroblasts deficient in LRP. LRP is important in TSP–CRT signaling, as shown by the ability of hep I to stimulate association of Gαi2 with LRP. The isolated proteins LRP and CRT interact, and LRP and CRT are associated with hep I in molecular complexes extracted from cells. These data establish a mechanism of cell surface CRT signaling through its coreceptor, LRP, and suggest a novel function for LRP in regulating cell adhesion.

Collaboration


Dive into the Joanne E. Murphy-Ullrich's collaboration.

Top Co-Authors

Avatar

Manuel A. Pallero

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

James S. Hagood

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Yuhua Song

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Deane F. Mosher

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Yong Zhou

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Maria H. Poczatek

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stacey Schultz-Cherry

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Namasivayam Ambalavanan

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Carrie A. Elzie

University of Alabama at Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge