Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joanne Goodwin is active.

Publication


Featured researches published by Joanne Goodwin.


Antimicrobial Agents and Chemotherapy | 2012

Differential In Vivo Activities of Anidulafungin, Caspofungin, and Micafungin against Candida glabrata Isolates with and without FKS Resistance Mutations

Maiken Cavling Arendrup; David S. Perlin; Rasmus Hare Jensen; Susan J. Howard; Joanne Goodwin; William W. Hope

ABSTRACT We recently observed that the micafungin MICs for some Candida glabrata fks hot spot mutant isolates are less elevated than those for the other echinocandins, suggesting that the efficacy of micafungin may be differentially dependent on such mutations. Three clinical C. glabrata isolates with or without (S3) fks hot spot mutations R83 (Fks2p-S663F) and RR24 (Fks1p-S629P) and low, medium, and high echinocandin MICs, respectively, were evaluated to assess the in vivo efficacy in an immunocompetent mouse model using three doses of each echinocandin. Drug concentrations were determined in plasma and kidneys by high-performance liquid chromatography (HPLC). A pharmacokinetic-pharmacodynamic mathematical model was used to define the area under the concentration-time curve (AUC) that produced half- and near-maximal activity. Micafungin was equally efficacious against the S3 and R83 isolates. The estimates for the AUCs of each echinocandin that induced half-maximal effect (E50s) were 194.2 and 53.99 mg · h/liter, respectively. In contrast, the maximum effect (Emax) for caspofungin was higher against S3 than R83, but the estimates for E50 were similar (187.1 and 203.5 mg · h/liter, respectively). Anidulafungin failed to induce a ≥1-log reduction for any of the isolates (AUC range, 139 to 557 mg · h/liter). None of the echinocandins were efficacious in mice challenged with the RR24 isolate despite lower virulence (reduced maximal growth, prolonged lag phase, and lower kidney burden). The AUC associated with half-maximal effect was higher than the average human exposure for all drug-dose-bug combinations except micafungin and the R83 isolate. In conclusion, differences in micafungin MICs are associated with differential antifungal activities in the animal model. This study may have implications for clinical practice and echinocandin breakpoint determination, and further studies are warranted.


The Journal of Infectious Diseases | 2011

Pharmacokinetics and Pharmacodynamics of Posaconazole for Invasive Pulmonary Aspergillosis: Clinical Implications for Antifungal Therapy

Susan J. Howard; Jodi M. Lestner; Andrew Sharp; Lea Gregson; Joanne Goodwin; Joanne Slater; Jayesh B. Majithiya; Peter Warn; William W. Hope

BACKGROUND Posaconazole is a triazole with anti-Aspergillus activity. However, little is known about the utility of posaconazole as primary therapy for invasive pulmonary aspergillosis. METHODS An in vitro model of the human alveolus was used to study the impact of minimum inhibitory concentrations (MIC) on exposure-response relationships. The pharmacokinetic-pharmacodynamic relationships of posaconazole were examined in an inhalational murine model of invasive pulmonary aspergillosis. A mathematical model was fitted to the entire data set. This model was then used to describe the relationship between drug exposure, quantified in terms of the area under the concentration time curve to MIC (AUC:MIC) and the observed antifungal effect. RESULTS The posaconazole MIC was an important determinant of exposure-response relationships and accounted for a portion of the observed variance. Murine pharmacokinetics were linear for dosages 1-20 mg/kg/day. There was a dose-dependent decline in serum galactomannan concentrations, with near-maximal suppression following 20 mg/kg/day. The murine pharmacokinetic-pharmacodynamic data were well described by the mathematical model. An AUC:MIC ratio of 167 was associated with half-maximal antifungal effect. CONCLUSIONS These results provide the experimental foundation for the selection of candidate posaconazole regimens for the primary treatment of invasive pulmonary aspergillosis in profoundly neutropenic hosts.


Antimicrobial Agents and Chemotherapy | 2011

Disseminated Candidiasis Caused by Candida albicans with Amino Acid Substitutions in Fks1 at Position Ser645 Cannot Be Successfully Treated with Micafungin

J. L. Slater; Susan J. Howard; Andrew D. Sharp; Joanne Goodwin; Lea Gregson; A. Alastruey-Izquierdo; Maiken Cavling Arendrup; Peter Warn; David S. Perlin; William W. Hope

ABSTRACT The clinical utility of the echinocandins is potentially compromised by the emergence of drug resistance. We investigated whether Candida albicans with amino acid substitutions at position Ser645 in Fks1 can be treated with either a conventional or an elevated dosage of micafungin. We studied Candida albicans (wild-type SC5314; MIC, 0.06 mg/liter) and four fks1 mutants (one FKS1/fks1 heterozygote mutant [MIC, 0.5 mg/liter] and three fks1/fks1 homozygous mutants [MICs for all, 2 mg/liter]) with a variety of amino acid substitutions at Ser645. The pharmacokinetic and pharmacodynamic relationships were characterized in a persistently neutropenic murine model of disseminated candidiasis. A mathematical model was fitted to all pharmacokinetic and pharmacodynamic data. This mathematical model was then used to “humanize” the murine pharmacokinetics, and the predicted antifungal effect was determined. The estimated maximal rate of growth and ultimate fungal densities in the kidney for each of the strains were similar. The administration of micafungin at 1 mg/kg of body weight to the wild type resulted in moderate antifungal activity, whereas the administration of 5 and 20 mg/kg resulted in rapid fungicidal activity. In contrast, the FKS1/fks heterozygote was killed only with 20 mg/kg, and the homozygous fks1 mutants failed to respond to any dosage. The bridging study revealed that human dosages of 100 and 400 mg/day were active only against the wild type, with no activity against either the heterozygote or the homozygote mutants. Ser645 Fks1 Candida albicans mutants cannot be treated with either conventional or elevated dosages of micafungin and should be deemed resistant.


Antimicrobial Agents and Chemotherapy | 2013

In Vitro Susceptibility of Aspergillus fumigatus to Isavuconazole: Correlation with Itraconazole, Voriconazole, and Posaconazole

Lea Gregson; Joanne Goodwin; Adam Johnson; Laura McEntee; Caroline B. Moore; Malcolm D. Richardson; William W. Hope; Susan J. Howard

ABSTRACT Triazoles are first-line agents for treating aspergillosis. The prevalence of azole resistance in Aspergillus fumigatus is increasing, and cross-resistance is a growing concern. In this study, the susceptibilities of 40 A. fumigatus clinical isolates were tested by using the CLSI method with amphotericin B, itraconazole, voriconazole, posaconazole, and the new triazole isavuconazole. Isavuconazole MICs were higher in strains with reduced susceptibilities to other triazoles, mirroring changes in voriconazole susceptibility. Isavuconazole MICs differed depending on the Cyp51A substitution.


Antimicrobial Agents and Chemotherapy | 2010

Pharmacokinetics and pharmacodynamics of amphotericin B deoxycholate, liposomal amphotericin B, and amphotericin B lipid complex in an in vitro model of invasive pulmonary aspergillosis.

Jodi M. Lestner; Susan J. Howard; Joanne Goodwin; Lea Gregson; Jayesh B. Majithiya; Thomas J. Walsh; Gerard M. Jensen; William W. Hope

ABSTRACT The pharmacodynamic and pharmacokinetic (PK-PD) properties of amphotericin B (AmB) formulations against invasive pulmonary aspergillosis (IPA) are not well understood. We used an in vitro model of IPA to further elucidate the PK-PD of amphotericin B deoxycholate (DAmB), liposomal amphotericin B (LAmB) and amphotericin B lipid complex (ABLC). The pharmacokinetics of these formulations for endovascular fluid, endothelial cells, and alveolar cells were estimated. Pharmacodynamic relationships were defined by measuring concentrations of galactomannan in endovascular and alveolar compartments. Confocal microscopy was used to visualize fungal biomass. A mathematical model was used to calculate the area under the concentration-time curve (AUC) in each compartment and estimate the extent of drug penetration. The interaction of LAmB with host cells and hyphae was visualized using sulforhodamine B-labeled liposomes. The MICs for the pure compound and the three formulations were comparable (0.125 to 0.25 mg/liter). For all formulations, concentrations of AmB progressively declined in the endovascular fluid as the drug distributed into the cellular bilayer. Depending on the formulation, the AUCs for AmB were 10 to 300 times higher within the cells than within endovascular fluid. The concentrations producing a 50% maximal effect (EC50) in the endovascular compartment were 0.12, 1.03, and 4.41 mg/liter for DAmB, LAmB, and ABLC, respectively, whereas, the EC50 in the alveolar compartment were 0.17, 7.76, and 39.34 mg/liter, respectively. Confocal microscopy suggested that liposomes interacted directly with hyphae and host cells. The PK-PD relationships of the three most widely used formulations of AmB differ markedly within an in vitro lung model of IPA.


Antimicrobial Agents and Chemotherapy | 2015

Pharmacodynamics of Fosfomycin: Insights into Clinical Use for Antimicrobial Resistance

Fernando Docobo-Pérez; George L. Drusano; Adam Johnson; Joanne Goodwin; Sarah Whalley; V. Ramos-Martín; Mónica Ballestero-Téllez; J. M. Rodríguez-Martínez; M. C. Conejo; M. Van Guilder; Jesús Rodríguez-Baño; Álvaro Pascual; William W. Hope

ABSTRACT The aim of this study was to improve the understanding of the pharmacokinetic-pharmacodynamic relationships of fosfomycin against extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli strains that have different fosfomycin MICs. Our methods included the use of a hollow fiber infection model with three clinical ESBL-producing E. coli strains. Human fosfomycin pharmacokinetic profiles were simulated over 4 days. Preliminary studies conducted to determine the dose ranges, including the dose ranges that suppressed the development of drug-resistant mutants, were conducted with regimens from 12 g/day to 36 g/day. The combination of fosfomycin at 4 g every 8 h (q8h) and meropenem at 1 g/q8h was selected for further assessment. The total bacterial population and the resistant subpopulations were determined. No efficacy was observed against the Ec42444 strain (fosfomycin MIC, 64 mg/liter) at doses of 12, 24, or 36 g/day. All dosages induced at least initial bacterial killing against Ec46 (fosfomycin MIC, 1 mg/liter). High-level drug-resistant mutants appeared in this strain in response to 12, 15, and 18 g/day. In the study arms that included 24 g/day, once or in a divided dose, a complete extinction of the bacterial inoculum was observed. The combination of meropenem with fosfomycin was synergistic for bacterial killing and also suppressed all fosfomycin-resistant clones of Ec2974 (fosfomycin MIC, 1 mg/liter). We conclude that fosfomycin susceptibility breakpoints (≤64 mg/liter according to CLSI [for E. coli urinary tract infections only]) should be revised for the treatment of serious systemic infections. Fosfomycin can be used to treat infections caused by organisms that demonstrate lower MICs and lower bacterial densities, although relatively high daily dosages (i.e., 24 g/day) are required to prevent the emergence of bacterial resistance. The ratio of the area under the concentration-time curve for the free, unbound fraction of fosfomycin versus the MIC (fAUC/MIC) appears to be the dynamically linked index of suppression of bacterial resistance. Fosfomycin with meropenem can act synergistically against E. coli strains in preventing the emergence of fosfomycin resistance.


Antimicrobial Agents and Chemotherapy | 2013

Pharmacokinetics and Pharmacodynamics of Fluconazole for Cryptococcal Meningoencephalitis: Implications for Antifungal Therapy and In Vitro Susceptibility Breakpoints

Ajay Sudan; Susan J. Howard; Zaid Al-Nakeeb; Andrew Sharp; Joanne Goodwin; Lea Gregson; Peter Warn; Timothy W. Felton; John R. Perfect; Thomas S. Harrison; William W. Hope

ABSTRACT Fluconazole is frequently the only antifungal agent that is available for induction therapy for cryptococcal meningitis. There is relatively little understanding of the pharmacokinetics and pharmacodynamics (PK-PD) of fluconazole in this setting. PK-PD relationships were estimated with 4 clinical isolates of Cryptococcus neoformans. MICs were determined using Clinical and Laboratory Standards Institute (CLSI) methodology. A nonimmunosuppressed murine model of cryptococcal meningitis was used. Mice received two different doses of fluconazole (125 mg/kg of body weight/day and 250 mg/kg of body weight/day) orally for 9 days; a control group of mice was not given fluconazole. Fluconazole concentrations in plasma and in the cerebrum were determined using high-performance liquid chromatography (HPLC). The cryptococcal density in the brain was estimated using quantitative cultures. A mathematical model was fitted to the PK-PD data. The experimental results were extrapolated to humans (bridging study). The PK were linear. A dose-dependent decline in fungal burden was observed, with near-maximal activity evident with dosages of 250 mg/kg/day. The MIC was important for understanding the exposure-response relationships. The mean AUC/MIC ratio associated with stasis was 389. The results of the bridging study suggested that only 66.7% of patients receiving 1,200 mg/kg would achieve or exceed an AUC/MIC ratio of 389. The potential breakpoints for fluconazole against Cryptococcus neoformans follow: susceptible, ≤2 mg/liter; resistant, >2 mg/liter. Fluconazole may be an inferior agent for induction therapy because many patients cannot achieve the pharmacodynamic target. Clinical breakpoints are likely to be significantly lower than epidemiological cutoff values. The MIC may guide the appropriate use of fluconazole. If fluconazole is the only option for induction therapy, then the highest possible dose should be used.


The Journal of Infectious Diseases | 2012

Pharmacodynamics of Voriconazole in a Dynamic In Vitro Model of Invasive Pulmonary Aspergillosis: Implications for In Vitro Susceptibility Breakpoints

Adam R. Jeans; Susan J. Howard; Zaid Al-Nakeeb; Joanne Goodwin; Lea Gregson; Jayesh B. Majithiya; Cornelia Lass-Flörl; Manuel Cuenca-Estrella; Maiken Cavling Arendrup; Peter Warn; William W. Hope

BACKGROUND Voriconazole is a first-line agent for the treatment of invasive pulmonary aspergillosis (IPA). There are increasing reports of Aspergillus fumigatus isolates with reduced susceptibility to voriconazole. METHODS An in vitro dynamic model of IPA was developed that enabled simulation of human-like voriconazole pharmacokinetics. Galactomannan was used as a biomarker. The pharmacodynamics of voriconazole against wild-type and 3 resistant strains of A. fumigatus were defined. The results were bridged to humans to provide decision support for setting breakpoints for voriconazole using Clinical Laboratory Standards Institute (CLSI) and European Committee of Antimicrobial Susceptibility Testing (EUCAST) methodologies. RESULTS Isolates with higher minimum inhibitory concentrations (MICs) required higher area under the concentration time curves (AUCs) to achieve suppression of galactomannan. Using CLSI and EUCAST methodologies, the AUC:MIC values that achieved suppression of galactomannan were 55 and 32.1, respectively. Using CLSI and EUCAST methodologies, the trough concentration:MIC values that achieved suppression of galactomannan were 1.68 and 1, respectively. Potential CLSI breakpoints for voriconazole are ≤ 0.5 mg/L for susceptible and >1 mg/L for resistant. Potential EUCAST breakpoints for voriconazole are ≤1 mg/L for susceptible and >2 mg/L for resistant. CONCLUSIONS This dynamic model of IPA is a useful tool to address many remaining questions related to antifungal treatment of Aspergillus spp.


Antimicrobial Agents and Chemotherapy | 2013

Impact of Bolus Dosing versus Continuous Infusion of Piperacillin and Tazobactam on the Development of Antimicrobial Resistance in Pseudomonas aeruginosa

Tim Felton; Joanne Goodwin; L. O'Connor; Andrew Sharp; Lea Gregson; Susan J. Howard; Michael Neely; William W. Hope

ABSTRACT Management of nosocomial pneumonia is frequently complicated by bacterial resistance. Extended infusions of beta-lactams are increasingly being used to improve clinical outcomes. However, the impact of this strategy on the emergence of antimicrobial resistance is not known. A hollow-fiber infection model with Pseudomonas aeruginosa (PAO1) was used. Pharmacokinetic (PK) profiles of piperacillin-tazobactam similar to those in humans were simulated over 5 days. Three dosages of piperacillin-tazobactam were administered over 0.5 h or 4 h, with redosing every 8 h. Two initial bacterial densities were investigated (∼104 CFU/ml and ∼107 CFU/ml). The time courses of the total bacterial population and the resistant subpopulation were determined. All data were described using a mathematical model, which was then used to define the relationship between drug concentrations, bacterial killing, and emergence of piperacillin resistance. There was logarithmic growth in controls in the initial 24 h, reaching a plateau of ∼9 log10 CFU/ml. Bacterial killing following administration of piperacillin via bolus dosing and that after extended infusions were similar. For the lower initial bacterial density, trough total plasma piperacillin concentration/MIC ratios of 3.4 and 10.4 for bolus and extended-infusion regimens, respectively, were able to suppress the emergence of piperacillin resistance. For the higher initial bacterial density, all regimens were associated with progressive growth of a resistant subpopulation. A stratified approach, according to bacterial density, is required to treat patients with nosocomial pneumonia. Antimicrobial monotherapy may be sufficient for some patients. However, for patients with a high bacterial burden, alternative therapeutic strategies are required to maximize bacterial killing and prevent antimicrobial resistance.


Antimicrobial Agents and Chemotherapy | 2011

Pharmacodynamics of Echinocandins against Candida glabrata: Requirement for Dosage Escalation To Achieve Maximal Antifungal Activity in Neutropenic Hosts

Susan J. Howard; Andrew Sharp; Joanne Goodwin; Lea Gregson; A. Alastruey-Izquierdo; David S. Perlin; Peter Warn; William W. Hope

ABSTRACT Candida glabrata is a leading cause of disseminated candidiasis. The echinocandins are increasingly used as first-line agents for the treatment of patients with this syndrome, although the optimal regimen for the treatment of invasive Candida glabrata infections in neutropenic patients is not known. We studied the pharmacokinetics (PK) and pharmacodynamics (PD) of micafungin, anidulafungin, and caspofungin in a neutropenic murine model of disseminated Candida glabrata infection to gain further insight into optimal therapeutic options for patients with this syndrome. A mathematical model was fitted to the data and used to bridge the experimental results to humans. The intravenous inoculation of Candida glabrata in mice was followed by logarithmic growth throughout the experimental period (101 h). A dose-dependent decline in fungal burden was observed following the administration of 0.1 to 20 mg/kg of body weight every 24 h for all three agents. The exposure-response relationships for each drug partitioned into distinct fungistatic and fungicidal components of activity. Surprisingly, the average human drug exposures following currently licensed regimens were predicted to result in a fungistatic antifungal effect. Higher human dosages of all three echinocandins are required to induce fungicidal effects in neutropenic hosts.

Collaboration


Dive into the Joanne Goodwin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lea Gregson

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar

Peter Warn

Manchester Academic Health Science Centre

View shared research outputs
Top Co-Authors

Avatar

Tim Felton

University Hospital of South Manchester NHS Foundation Trust

View shared research outputs
Top Co-Authors

Avatar

Andrew Sharp

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar

Zaid Al-Nakeeb

Manchester Academic Health Science Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adam Johnson

University of Liverpool

View shared research outputs
Top Co-Authors

Avatar

Andrew D. Sharp

University Hospital of South Manchester NHS Foundation Trust

View shared research outputs
Researchain Logo
Decentralizing Knowledge