Joanne Gutierrez
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joanne Gutierrez.
Proceedings of the National Academy of Sciences of the United States of America | 2007
James F. White; Justin Grodnitzky; John M. Louis; Loc Trinh; Joseph Shiloach; Joanne Gutierrez; J K Northup; Reinhard Grisshammer
G protein-coupled receptors (GPCRs) have been found as monomers but also as dimers or higher-order oligomers in cells. The relevance of the monomeric or dimeric receptor state for G protein activation is currently under debate for class A rhodopsin-like GPCRs. Clarification of this issue requires the availability of well defined receptor preparations as monomers or dimers and an assessment of their ligand-binding and G protein-coupling properties. We show by pharmacological and hydrodynamic experiments that purified neurotensin receptor NTS1, a class A GPCR, dimerizes in detergent solution in a concentration-dependent manner, with an apparent affinity in the low nanomolar range. At low receptor concentrations, NTS1 binds the agonist neurotensin with a Hill slope of ≈1; at higher receptor concentrations, neurotensin binding displays positive cooperativity with a Hill slope of ≈2. NTS1 monomers activate Gαqβ1γ2, whereas receptor dimers catalyze nucleotide exchange with lower affinity. Our results demonstrate that NTS1 dimerization per se is not a prerequisite for G protein activation.
Biochemical Journal | 2007
Eduardo Sainz; Margaret M. Cavenagh; Joanne Gutierrez; James F. Battey; John K. Northup; Susan L. Sullivan
The T2Rs belong to a multi-gene family of G-protein-coupled receptors responsible for the detection of ingested bitter-tasting compounds. The T2Rs are conserved among mammals with the human and mouse gene families consisting of about 25 members. In the present study we address the signalling properties of human and mouse T2Rs using an in vitro reconstitution system in which both the ligands and G-proteins being assayed can be manipulated independently and quantitatively assessed. We confirm that the mT2R5, hT2R43 and hT2R47 receptors respond selectively to micromolar concentrations of cycloheximide, aristolochic acid and denatonium respectively. We also demonstrate that hT2R14 is a receptor for aristolochic acid and report the first characterization of the ligand specificities of hT2R7, which is a broadly tuned receptor responding to strychnine, quinacrine, chloroquine and papaverine. Using these defined ligand-receptor interactions, we assayed the ability of the ligand-activated T2Rs to catalyse GTP binding on divergent members of the G(alpha) family including three members of the G(alphai) subfamily (transducin, G(alphai1) and G(alphao)) as well as G(alphas) and G(alphaq). The T2Rs coupled with each of the three G(alphai) members tested. However, none of the T2Rs coupled to either G(alphas) or G(alphaq), suggesting the T2Rs signal primarily through G(alphai)-mediated signal transduction pathways. Furthermore, we observed different G-protein selectivities among the T2Rs with respect to both G(alphai) subunits and G(betagamma) dimers, suggesting that bitter taste is transduced by multiple G-proteins that may differ among the T2Rs.
Nature Structural & Molecular Biology | 2011
Angeline M. Lyon; Valerie M. Tesmer; Vishan D. Dhamsania; David M. Thal; Joanne Gutierrez; Shoaib Chowdhury; Krishna C. Suddala; John K. Northup; John J. G. Tesmer
The enzyme phospholipase C-β (PLCβ) is a crucial regulator of intracellular calcium levels whose activity is controlled by heptahelical receptors that couple to members of the Gq family of heterotrimeric G proteins. We have determined atomic structures of two invertebrate homologs of PLCβ (PLC21) from cephalopod retina and identified a helix from the C-terminal regulatory region that interacts with a conserved surface of the catalytic core of the enzyme. Mutations designed to disrupt the analogous interaction in human PLCβ3 considerably increase basal activity and diminish stimulation by Gαq. Gαq binding requires displacement of the autoinhibitory helix from the catalytic core, thus providing an allosteric mechanism for activation of PLCβ.
American Journal of Human Genetics | 2015
M. Hashim Raza; Rafael Mattera; Robert J. Morell; Eduardo Sainz; Rachel Rahn; Joanne Gutierrez; Emily Paris; Jessica Root; Beth Solomon; Carmen C. Brewer; M. Asim Raza Basra; Shaheen N. Khan; Sheikh Riazuddin; Allen R. Braun; Juan S. Bonifacino; Dennis Drayna
Stuttering is a common, highly heritable neurodevelopmental disorder characterized by deficits in the volitional control of speech. Whole-exome sequencing identified two heterozygous AP4E1 coding variants, c.1549G>A (p.Val517Ile) and c.2401G>A (p.Glu801Lys), that co-segregate with persistent developmental stuttering in a large Cameroonian family, and we observed the same two variants in unrelated Cameroonians with persistent stuttering. We found 23 other rare variants, including predicted loss-of-function variants, in AP4E1 in unrelated stuttering individuals in Cameroon, Pakistan, and North America. The rate of rare variants in AP4E1 was significantly higher in unrelated Pakistani and Cameroonian stuttering individuals than in population-matched control individuals, and coding variants in this gene are exceptionally rare in the general sub-Saharan West African, South Asian, and North American populations. Clinical examination of the Cameroonian family members failed to identify any symptoms previously reported in rare individuals carrying homozygous loss-of-function mutations in this gene. AP4E1 encodes the ε subunit of the heterotetrameric (ε-β4-μ4-σ4) AP-4 complex, involved in protein sorting at the trans-Golgi network. We found that the μ4 subunit of AP-4 interacts with NAGPA, an enzyme involved in the synthesis of the mannose 6-phosphate signal that targets acid hydrolases to the lysosome and the product of a gene previously associated with stuttering. These findings implicate deficits in intracellular trafficking in persistent stuttering.
European Journal of Human Genetics | 2016
M. Hashim Raza; Carlos F. Domingues; Ronald Webster; Eduardo Sainz; Emily Paris; Rachel Rahn; Joanne Gutierrez; Ho Ming Chow; Jennifer Mundorff; Chang Soo Kang; Naveeda Riaz; Muhammad Asim R Basra; Shaheen N. Khan; Sheikh Riazuddin; Danilo Moretti-Ferreira; Allen R. Braun; Dennis Drayna
Homozygous mutations in GNPTAB and GNPTG are classically associated with mucolipidosis II (ML II) alpha/beta and mucolipidosis III (ML III) alpha/beta/gamma, which are rare lysosomal storage disorders characterized by multiple pathologies. Recently, variants in GNPTAB, GNPTG, and the functionally related NAGPA gene have been associated with non-syndromic persistent stuttering. In a worldwide sample of 1013 unrelated individuals with non-syndromic persistent stuttering we found 164 individuals who carried a rare non-synonymous coding variant in one of these three genes. We compared the frequency of these variants with those in population-matched controls and genomic databases, and their location with those reported in mucolipidosis. Stuttering subjects displayed an excess of non-synonymous coding variants compared to controls and individuals in the 1000 Genomes and Exome Sequencing Project databases. We identified a total of 81 different variants in our stuttering cases. Virtually all of these were missense substitutions, only one of which has been previously reported in mucolipidosis, a disease frequently associated with complete loss-of-function mutations. We hypothesize that rare non-synonymous coding variants in GNPTAB, GNPTG, and NAGPA may account for as much as 16% of persistent stuttering cases, and that variants in GNPTAB and GNPTG are at different sites and may in general, cause less severe effects on protein function than those in ML II alpha/beta and ML III alpha/beta/gamma.
PLOS ONE | 2016
Davide Risso; Julia Kozlitina; Eduardo Sainz; Joanne Gutierrez; Stephen Wooding; Betelihem Getachew; Donata Luiselli; Carla J. Berg; Dennis Drayna
Common TAS2R38 taste receptor gene variants specify the ability to taste phenylthiocarbamide (PTC), 6-n-propylthiouracil (PROP) and structurally related compounds. Tobacco smoke contains a complex mixture of chemical substances of varying structure and functionality, some of which activate different taste receptors. Accordingly, it has been suggested that non-taster individuals may be more likely to smoke because of their inability to taste bitter compounds present in tobacco smoke, but results to date have been conflicting. We studied three cohorts: 237 European-Americans from the state of Georgia, 1,353 European-Americans and 2,363 African-Americans from the Dallas Heart Study (DHS), and 4,973 African-Americans from the Dallas Biobank. Tobacco use data was collected and TAS2R38 polymorphisms were genotyped for all participants, and PTC taste sensitivity was assessed in the Georgia population. In the Georgia group, PTC tasters were less common among those who smoke: 71.5% of smokers were PTC tasters while 82.5% of non-smokers were PTC tasters (P = 0.03). The frequency of the TAS2R38 PAV taster haplotype showed a trend toward being lower in smokers (38.4%) than in non-smokers (43.1%), although this was not statistically significant (P = 0.31). In the DHS European-Americans, the taster haplotype was less common in smokers (37.0% vs. 44.0% in non-smokers, P = 0.003), and conversely the frequency of the non-taster haplotype was more common in smokers (58.7% vs. 51.5% in non-smokers, P = 0.002). No difference in the frequency of these haplotypes was observed in African Americans in either the Dallas Heart Study or the Dallas Biobank. We conclude that TAS2R38 haplotypes are associated with smoking status in European-Americans but not in African-American populations. PTC taster status may play a role in protecting individuals from cigarette smoking in specific populations.
Neurobiology of Disease | 2014
Tae-Un Han; John Park; Carlos F. Domingues; Danilo Moretti-Ferreira; Emily Paris; Eduardo Sainz; Joanne Gutierrez; Dennis Drayna
A number of speech disorders including stuttering have been shown to have important genetic contributions, as indicated by high heritability estimates from twin and other studies. We studied the potential contribution to stuttering from variants in the FOXP2 gene, which have previously been associated with developmental verbal dyspraxia, and from variants in the CNTNAP2 gene, which have been associated with specific language impairment (SLI). DNA sequence analysis of these two genes in a group of 602 unrelated cases, all with familial persistent developmental stuttering, revealed no excess of potentially deleterious coding sequence variants in the cases compared to a matched group of 487 well characterized neurologically normal controls. This was compared to the distribution of variants in the GNPTAB, GNPTG, and NAGPA genes which have previously been associated with persistent stuttering. Using an expanded subject data set, we again found that NAGPA showed significantly different mutation frequencies in North Americans of European descent (p=0.0091) and a significant difference existed in the mutation frequency of GNPTAB in Brazilians (p=0.00050). No significant differences in mutation frequency in the FOXP2 and CNTNAP2 genes were observed between cases and controls. To examine the pattern of expression of these five genes in the human brain, real time quantitative reverse transcription PCR was performed on RNA purified from 27 different human brain regions. The expression patterns of FOXP2 and CNTNAP2 were generally different from those of GNPTAB, GNPTG and NAPGA in terms of relatively lower expression in the cerebellum. This study provides an improved estimate of the contribution of mutations in GNPTAB, GNPTG and NAGPA to persistent stuttering, and suggests that variants in FOXP2 and CNTNAP2 are not involved in the genesis of familial persistent stuttering. This, together with the different brain expression patterns of GNPTAB, GNPTG, and NAGPA compared to that of FOXP2 and CNTNAP2, suggests that the genetic neuropathological origins of stuttering differ from those of verbal dyspraxia and SLI.
npj Biofilms and Microbiomes | 2017
Xiaoling Qiang; Anthony S. Liotta; Joseph Shiloach; Joanne Gutierrez; Haichao Wang; Mahendar Ochani; Kanta Ochani; Huan Yang; Aviva Rabin; Derek LeRoith; Maxine A. Lesniak; Markus Böhm; Christian Maaser; Klaus Kannengiesser; Mark Donowitz; Shervin Rabizadeh; Christopher J. Czura; Kevin J. Tracey; Mark Westlake; Aida Zarfeshani; Syed F. Mehdi; Ann Danoff; Xueliang Ge; Suparna Sanyal; Gary J. Schwartz; Jesse Roth
E. coli releases a 33 amino acid peptide melanocortin-like peptide of E. coli (MECO-1) that is identical to the C-terminus of the E. coli elongation factor-G (EF-G) and has interesting similarities to two prominent mammalian melanocortin hormones, alpha-melanocyte-stimulating hormone (alpha-MSH) and adrenocorticotropin (ACTH). Note that MECO-1 lacks HFRW, the common pharmacophore of the known mammalian melanocortin peptides. MECO-1 and the two hormones were equally effective in severely blunting release of cytokines (HMGB1 and TNF) from macrophage-like cells in response to (i) endotoxin (lipopolysaccharide) or (ii) pro-inflammatory cytokine HMGB-1. The in vitro anti-inflammatoty effects of MECO-1 and of alpha-MSH were abrogated by (i) antibody against melanocortin-1 receptor (MC1R) and by (ii) agouti, an endogenous inverse agonist of MC1R. In vivo MECO-1 was even more potent than alpha-MSH in rescuing mice from death due to (i) lethal doses of LPS endotoxin or (ii) cecal ligation and puncture, models of sterile and infectious sepsis, respectively.Gut bacteria: Helping out with hormones?A molecule released by the common bacterium E. coli may act like a hormone on cells in the gut, with beneficial anti-inflammatory effects. The molecule is a short protein fragment known as a peptide. Its hormone-like activity on cultured mammalian cells was discovered by an international team of researchers led by Jesse Roth at the Feinstein Institute for Medical Research in Manhasset, USA. The peptide shares structural similarities with two known mammalian hormones and binds to an identified hormone receptor molecule. In some circumstances, it was shown to save mice from death by suppressing damaging inflammation. This discovery could broaden our understanding of the beneficial effects of gut bacteria. If applicable in humans it could reveal another link in our subtle relationship with bacteria, and may lead to uses in preventive and therapeutic medicine.
Proceedings of the National Academy of Sciences of the United States of America | 1992
Bruce A. Citron; Michael D. Davis; Sheldon Milstien; Joanne Gutierrez; D B Mendel; Gerald R. Crabtree; Seymour Kaufman
Journal of Biological Chemistry | 1995
Jane Mitchell; Joanne Gutierrez; John K. Northup