Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joanne Li is active.

Publication


Featured researches published by Joanne Li.


Chemical Communications | 2015

Non-invasive, real-time reporting drug release in vitro and in vivo

Yanfeng Zhang; Qian Yin; Jonathan Yen; Joanne Li; Hanze Ying; Hua Wang; Yuyan Hua; Eric J. Chaney; Stephen A. Boppart; Jianjun Cheng

We developed a real-time drug-reporting conjugate (CPT-SS-CyN) composed of a near-infrared (NIR) fluorescent cyanine-amine dye (CyN), a disulfide linker, and a model therapeutic drug (camptothecin, CPT). Treatment with dithiothreitol (DTT) induces cleavage of the disulfide bond, followed by two simultaneous intramolecular cyclization reactions with identical kinetics, one to cleave the urethane linkage to release the NIR dye and the other to cleave the carbonate linkage to release CPT. The released CyN has an emission wavelength (760 nm) that is significantly different from CPT-SS-CyN (820 nm), enabling easy detection and monitoring of drug release. A linear relationship between the NIR fluorescence intensity at 760 nm and the amount of CPT released was observed, substantiating the use of this drug-reporting conjugate to enable precise, real-time, and non-invasive quantitative monitoring of drug release in live cells and semi-quantitative monitoring in live animals.


Journal of Biophotonics | 2017

Label-free in vivo cellular-level detection and imaging of apoptosis.

Andrew J. Bower; Marina Marjanovic; Youbo Zhao; Joanne Li; Eric J. Chaney; Stephen A. Boppart

Cell death plays a critical role in health and homeostasis as well as in the pathogenesis and treatment of a broad spectrum of diseases and can be broadly divided into two main categories: apoptosis, or programmed cell death, and necrosis, or acute cell death. While these processes have been characterized extensively in vitro, label-free detection of apoptosis and necrosis at the cellular level in vivo has yet to be shown. In this study, for the first time, fluorescence lifetime imaging microscopy (FLIM) of intracellular reduced nicotinamide adenine dinucleotide (NADH) was utilized to assess the metabolic response of in vivo mouse epidermal keratinocytes following induction of apoptosis and necrosis. Results show significantly elevated levels of both the mean lifetime of NADH and the intracellular ratio of protein bound-to-free NADH in the apoptotic compared to the necrotic tissue. In addition, the longitudinal profiles of these two cell death processes show remarkable differences. By identifying and extracting these temporal metabolic signatures, apoptosis in single cells can be studied in native tissue environments within the living organism.


Biomedical Optics Express | 2015

Effect of recombinant interleukin-12 on murine skin regeneration and cell dynamics using in vivo multimodal microscopy

Joanne Li; Andrew J. Bower; Vladimir Vainstein; Zoya Gluzman-Poltorak; Eric J. Chaney; Marina Marjanovic; Lena A. Basile; Stephen A. Boppart

Interleukin-12 (IL-12) is a pro-inflammatory cytokine known for its role in immunity, and previous studies have shown that IL-12 provides mitigation of radiation injury. In this study, we utilize a multimodal microscopy system equipped with second harmonic generation (SHG) and fluorescence lifetime imaging microscopy (FLIM) to examine the effect of IL-12 on collagen structure and cellular metabolic activity in vivo during skin wound healing. This preliminary study illustrates the highly dynamic and heterogeneous in vivo microenvironment of the wounded skin. In addition, results suggest that IL-12 triggers a significantly more rapid and greater cellular metabolic response in the wounded animals. These results can elucidate insights into the response mechanism of IL-12 in both wound healing and acute radiation syndrome.


Lasers in Surgery and Medicine | 2017

Intraoperative optical coherence tomography for soft tissue sarcoma differentiation and margin identification

Kelly J. Mesa; Laura E. Selmic; Paritosh Pande; Guillermo L. Monroy; Jennifer K. Reagan; Jonathan Samuelson; Elizabeth A. Driskell; Joanne Li; Marina Marjanovic; Eric J. Chaney; Stephen A. Boppart

Sarcomas are rare but highly aggressive tumors, and local recurrence after surgical excision can occur in up to 50% cases. Therefore, there is a strong clinical need for accurate tissue differentiation and margin assessment to reduce incomplete resection and local recurrence. The purpose of this study was to investigate the use of optical coherence tomography (OCT) and a novel image texture‐based processing algorithm to differentiate sarcoma from muscle and adipose tissue.


Experimental Dermatology | 2016

Longitudinal in vivo tracking of adverse effects following topical steroid treatment.

Andrew J. Bower; Zane A. Arp; Youbo Zhao; Joanne Li; Eric J. Chaney; Marina Marjanovic; Angela Hughes-Earle; Stephen A. Boppart

Topical steroids are known for their anti‐inflammatory properties and are commonly prescribed to treat many adverse skin conditions such as eczema and psoriasis. While these treatments are known to be effective, adverse effects including skin atrophy are common. In this study, the progression of these effects is investigated in an in vivo mouse model using multimodal optical microscopy. Utilizing a system capable of performing two‐photon excitation fluorescence microscopy (TPEF) of reduced nicotinamide adenine dinucleotide (NADH) to visualize the epidermal cell layers and second harmonic generation (SHG) microscopy to identify collagen in the dermis, these processes can be studied at the cellular level. Fluorescence lifetime imaging microscopy (FLIM) is also utilized to image intracellular NADH levels to obtain molecular information regarding metabolic activity following steroid treatment. In this study, fluticasone propionate (FP)‐treated, mometasone furoate (MF)‐treated and untreated animals were imaged longitudinally using a custom‐built multimodal optical microscope. Prolonged steroid treatment over the course of 21 days is shown to result in a significant increase in mean fluorescence lifetime of NADH, suggesting a faster rate of maturation of epidermal keratinocytes. Alterations to collagen organization and the structural microenvironment are also observed. These results give insight into the structural and biochemical processes of skin atrophy associated with prolonged steroid treatment.


Journal of Biomedical Optics | 2016

In vivo evaluation of adipose- and muscle-derived stem cells as a treatment for nonhealing diabetic wounds using multimodal microscopy

Joanne Li; Yair Pincu; Marina Marjanovic; Andrew J. Bower; Eric J. Chaney; Tor Jensen; Marni D. Boppart; Stephen A. Boppart

Abstract. Impaired skin wound healing is a significant comorbid condition of diabetes, which often results in nonhealing diabetic ulcers due to poor peripheral microcirculation, among other factors. The effectiveness of the regeneration of adipose-derived stem cells (ADSCs) and muscle-derived stem cells (MDSCs) was assessed using an integrated multimodal microscopy system equipped with two-photon fluorescence and second-harmonic generation imaging. These imaging modalities, integrated in a single platform for spatial and temporal coregistration, allowed us to monitor in vivo changes in the collagen network and cell dynamics in a skin wound. Fluorescently labeled ADSCs and MDSCs were applied topically to the wound bed of wild-type and diabetic (db/db) mice following punch biopsy. Longitudinal imaging demonstrated that ADSCs and MDSCs provided remarkable capacity for improved diabetic wound healing, and integrated microscopy revealed a more organized collagen remodeling in the wound bed of treated mice. The results from this study verify the regenerative capacity of stem cells toward healing and, with multimodal microscopy, provide insight regarding their impact on the skin microenvironment. The optical method outlined in this study, which has the potential for in vivo human use, may optimize the care and treatment of diabetic nonhealing wounds.


Quantitative imaging in medicine and surgery | 2017

A quantitative framework for the analysis of multimodal optical microscopy images

Andrew J. Bower; Benjamin Chidester; Joanne Li; Youbo Zhao; Marina Marjanovic; Eric J. Chaney; Minh N. Do; Stephen A. Boppart

BACKGROUND Multimodal optical microscopy, a set of imaging techniques based on unique, yet complementary contrast mechanisms and spatially and temporally co-registered data acquisition, has emerged as a powerful biomedical tool. However, the analysis of the dense, high-dimensional datasets acquired by these instruments remains mostly qualitative and restricted to analysis of each modality individually. METHODS Using a custom-built multimodal nonlinear optical microscope, high dimensional datasets were acquired for automated classification of functional cell states as well as identification of histopathological features in tissues slices. Supervised classification of cell death modes was performed through support vector machines (SVM) and semi-supervised classification of tissue slices was performed through the use of the expectation maximization (EM) algorithm. RESULTS Applications of these techniques to the automated classification of cell death modes as well as to the identification of tissue components in fixed ex vivo tissue slices are presented. The analysis techniques developed provide a direct link between multimodal image contrast and biological structure and function, resulting in highly accurate classification in both settings. CONCLUSIONS Quantification of multimodal optical microscopy images through statistical modeling of the high dimensional data acquired gives a strong correlation between biological structure and function and image contrast. These methods are sensitive to the identification of diagnostic, cellular-level features important in a variety of clinical settings.


Veterinary and Comparative Oncology | 2018

Intraoperative imaging of surgical margins of canine soft tissue sarcoma using optical coherence tomography

Laura E. Selmic; Jonathan Samuelson; Jennifer K. Reagan; Kelly J. Mesa; Elizabeth A. Driskell; Joanne Li; Marina Marjanovic; Stephen A. Boppart

Optical coherence tomography (OCT) is a rapid non-invasive imaging technique that has shown high sensitivity for intra-operative surgical margin assessment in human breast cancer clinical trials. This promising technology has not been evaluated in veterinary medicine. The objective of this study was to correlate normal and abnormal histological features with OCT images for surgical margins from excised canine soft tissue sarcoma (STS) and to establish image evaluation criteria for identifying positive surgical margins. Fourteen client-owned dogs underwent surgical resection of a STS and OCT imaging of 2 to 4 areas of interest on the resected specimen were performed. Following imaging these areas were marked with surgical ink and trimmed for histopathology evaluation. Results showed that different tissue types had distinct characteristic appearances on OCT imaging. Adipose tissue exhibited a relatively low scattering and a honey-comb texture pattern. Skeletal muscle and sarcoma tissue were both dense and highly scattering. While sarcoma tissue was highly scattering, it did not have organized recognizable structure in contrast to muscle which showed clear fibre alignment patterns. In this investigation, we showed different tissue types had different and characteristic scattering and image texture appearances on OCT, which closely correlate with low-power histology images. Given the differentiation between tissue types the results support that OCT could be used to identify positive surgical margins immediately following resection of STS. Further research is needed to assess the diagnostic accuracy of this method for surgical margin assessment.


Journal of Biophotonics | 2018

Investigating the healing mechanisms of an angiogenesis-promoting topical treatment for diabetic wounds using multimodal microscopy

Joanne Li; Andrew J. Bower; Zane A. Arp; Eric Olson; Claire Holland; Eric J. Chaney; Marina Marjanovic; Paritosh Pande; Aneesh Alex; Stephen A. Boppart

Impaired skin wound healing is a significant comorbid condition of diabetes that is caused by poor microcirculation, among other factors. Studies have shown that angiogenesis, a critical step in the wound healing process in diabetic wounds, can be promoted under hypoxia. In this study, an angiogenesis-promoting topical treatment for diabetic wounds, which promotes angiogenesis by mimicking a hypoxic environment via inhibition of prolyl hydroxylase resulting in elevation or maintenance of hypoxia-inducible factor, was investigated utilizing a custom-built multimodal microscopy system equipped with phase-variance optical coherence tomography (PV-OCT) and fluorescence lifetime imaging microscopy (FLIM). PV-OCT was used to track the regeneration of the microvasculature network, and FLIM was used to assess the in vivo metabolic response of mouse epidermal keratinocytes to the treatment during healing. Results show a significant decrease in the fluorescence lifetime of intracellular reduced nicotinamide adenine dinucleotide, suggesting a hypoxic-like environment in the wounded skin, followed by a quantitative increase in blood vessel density assessed by PV-OCT. Insights gained in these studies could lead to new endpoints for evaluation of the efficacy and healing mechanisms of wound-healing drugs in a setting where delayed healing does not permit available methods for evaluation to take place.


Proceedings of SPIE | 2017

Imaging bio-distribution of a topically applied dermatological cream on minipig skin using fluorescence lifetime imaging microscopy (Conference Presentation)

Aneesh Alex; Eric J. Chaney; Jennifer M. Criley; Darold R. Spillman; Phaedra B. Hutchison; Joanne Li; Marina Marjanovic; Steve Frey; Steven Cook; Stephen A. Boppart; Zane A. Arp

Currently there is a lack of in vivo techniques to evaluate the spatial bio-distribution of dermal drugs over time without the need to take multiple serial biopsies. To address this gap, we investigated the use of multi-photon optical imaging methods to non-invasively track drug distribution on miniature pig (Species: Sus scrofa, Strain: Göttingen) skin in vivo. Minipig skin is the standard comparative research model to human skin, and is anatomically and functionally similar. We employed fluorescence lifetime imaging microscopy (FLIM) to visualize the spatial distribution and residency time of a topically applied experimental dermatological cream. This was made possible by the endogenous fluorescent optical properties of the experimental drug (fluorescence lifetime > 3000 ps). Two different drug formulations were applied on 2 minipigs for 7 consecutive days, with the control creams applied on the contralateral side, followed by 7 days of post-application monitoring using a multi-modal optical imaging system (MPTflex-CARS, JenLab, Germany). FLIM images were obtained from the treated regions 24 hr post-application from day 1 to day 14 that allowed visualization of cellular and sub-cellular features associated with different dermal layers non-invasively to a depth of 200 µm. Five punch biopsies per animal were obtained from the corresponding treated regions between days 8 and 14 for bioanalytical analysis and comparison with results obtained using FLIM. In conclusion, utilization of non-invasive optical biopsy methods for dermal drug evaluation can provide true longitudinal monitoring of drug spatial distribution, remove sampling limitations, and be more time-efficient compared to traditional methods.

Collaboration


Dive into the Joanne Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C.D. Neitzel

Carle Foundation Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge