Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joanne M. Willey is active.

Publication


Featured researches published by Joanne M. Willey.


Natural Product Reports | 2013

Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature

Paul G. Arnison; Mervyn J. Bibb; Gabriele Bierbaum; Albert A. Bowers; Tim S. Bugni; Grzegorz Bulaj; Julio A. Camarero; Dominic J. Campopiano; Gregory L. Challis; Jon Clardy; Paul D. Cotter; David J. Craik; Michael J. Dawson; Elke Dittmann; Stefano Donadio; Pieter C. Dorrestein; Karl Dieter Entian; Michael A. Fischbach; John S. Garavelli; Ulf Göransson; Christian W. Gruber; Daniel H. Haft; Thomas K. Hemscheidt; Christian Hertweck; Colin Hill; Alexander R. Horswill; Marcel Jaspars; Wendy L. Kelly; Judith P. Klinman; Oscar P. Kuipers

This review presents recommended nomenclature for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), a rapidly growing class of natural products. The current knowledge regarding the biosynthesis of the >20 distinct compound classes is also reviewed, and commonalities are discussed.


Molecular Microbiology | 1998

A surface active protein involved in aerial hyphae formation in the filamentous fungus Schizophillum commune restores the capacity of a bald mutant of the filamentous bacterium Streptomyces coelicolor to erect aerial structures

R. D. Tillotson; Han A. B. Wösten; Monika Richter; Joanne M. Willey

The filamentous bacterium Streptomyces coelicolor undergoes a complex process of morphological differentiation involving the formation of a dense lawn of aerial hyphae that grow away from the colony surface into the air to form an aerial mycelium. Bald mutants of S. coelicolor, which are blocked in aerial mycelium formation, regain the capacity to erect aerial structures when exposed to a small hydrophobic protein called SapB, whose synthesis is temporally and spatially correlated with morphological differentiation. We now report that SapB is a surfactant that is capable of reducing the surface tension of water from 72 mJ m−2 to 30 mJ m−2 at a concentration of 50 μg ml−1. We also report that SapB, like the surface‐active peptide streptofactin produced by the species S. tendae, was capable of restoring the capacity of bald mutants of S. tendae to erect aerial structures. Strikingly, a member (SC3) of the hydrophobin family of fungal proteins involved in the erection of aerial hyphae in the filamentous fungus Schizophyllum commune was also capable of restoring the capacity of S. coelicolor and S. tendae bald mutants to erect aerial structures. SC3 is unrelated in structure to SapB and streptofactin but, like the streptomycetes proteins, the fungal protein is a surface active agent. Scanning electron microscopy revealed that aerial structures produced in response to both the bacterial or the fungal proteins were undifferentiated vegetative hyphae that had grown away from the colony surface but had not commenced the process of spore formation. We conclude that the production of SapB and streptofactin at the start of morphological differentiation contributes to the erection of aerial hyphae by decreasing the surface tension at the colony surface but that subsequent morphogenesis requires additional developmentally regulated events under the control of bald genes.


Microbiology | 2000

Surface-active proteins enable microbial aerial hyphae to grow into the air

Han A. B. Wösten; Joanne M. Willey

Although filamentous bacteria (i.e. the streptomycetes) and filamentous fungi belong to different kingdoms that diverged early in evolution, they adopted similar life styles. Both groups form aerial structures from which (a)sexual spores can develop. Some of the key processes involved in the formation of aerial hyphae by these microbes appear to be very similar. Both groups secrete highly surface-active molecules that lower the surface tension of their aqueous environment enabling hyphae to grow into the air. In the case of filamentous bacteria, small peptides (i.e. SapB and streptofactin) are secreted, while filamentous fungi use proteins known as hydrophobins to decrease the water surface tension. Although these fungal and bacterial molecules are not structurally related, they can, at least partially, functionally substitute for each other. Once escaped into the air, hyphae are coveredwith a hydrophobic film. In both filamentous fungi and filamentous bacteria this film is characterized by a mosaic of parallel rodlets. In fungi, this is the result of the self-assembly of hydrophobins but their bacterial equivalents have not yet been identified.


Molecular Microbiology | 2006

Morphogenetic surfactants and their role in the formation of aerial hyphae in Streptomyces coelicolor

Joanne M. Willey; Andrew Willems; Shinya Kodani; Justin R. Nodwell

Withstanding environmental adversity and seeking optimal conditions for reproduction are basic requirements for the survival of all organisms. Filamentous bacteria of the genus Streptomyces produce a remarkable cell type called the aerial hyphae that is central to its ability to meet both of these challenges. Recent advances have brought about a major shift in our understanding of the cell surface proteins that play important roles in the generation of these cells. Here we review our current understanding of one of these groups of proteins, the morphogenetic surfactants, with emphasis on the SapB protein of Streptomyces coelicolor.


Molecular Microbiology | 2005

SapT, a lanthionine-containing peptide involved in aerial hyphae formation in the streptomycetes

Shinya Kodani; Michael A. Lodato; Marcus C. Durrant; Francis Picart; Joanne M. Willey

The developmentally complex soil microbe Streptomyces tendae secretes a hydrophobic peptide that restored to developmental mutants of S. coelicolor the ability to raise aerial hyphae. The S. tendae peptide, SapT, has a lantibiotic structure and molecular modelling predicts that it is amphiphilic, making it structurally and functionally similar to the SapB peptide produced by S. coelicolor. However, SapT, which bears three β‐methyl lanthionine bridges and one lanthionine bridge and demonstrated limited antibiotic activity, is distinct from SapB. The amphiphilic nature of both SapT and SapB is required for their ability to serve as biosurfactants facilitating the emergence of newly formed aerial hyphae. Remarkably, SapB and SapT, and the fungal hydrophobin SC3 were shown to restore to a SapB‐deficient S. coelicolor mutant the capacity to undergo complete morphogenesis, such that the extracellular addition of protein resulted in sporulation. This suggests that the initiation of aerial growth may also indirectly trigger the signal transduction events needed for differentiation. These data imply that the production of morphogenetic peptides may be common among the streptomycetes, but that while their ability to function as biosurfactants is conserved, their specific lantibiotic structure is not. Finally, the identification of a second lanthionine‐containing morphogenetic peptide suggests that lantibiotic structure and function may be more diverse than previously thought.


Molecular Microbiology | 2002

A central regulator of morphological differentiation in the multicellular bacterium Streptomyces coelicolor.

Kien T. Nguyen; Joanne M. Willey; Liem Nguyen; Lieu T. Nguyen; Patrick H. Viollier; Charles J. Thompson

In the multicellular bacterium Streptomyces coelicolor, functions of developmental (bald) genes are required for the biosynthesis of SapB, a hydrophobic peptidic morphogen that facilitates aerial hyphae formation. Here, we show that aerial hyphal growth and SapB biosynthesis could be activated independently from the normal developmental cascade by providing unprogrammed expression of functionally interactive genes within the ram cluster. ramC, ramS and ramR were essential for normal growth of aerial hyphae, and ramR, a response regulator gene, was a key activator of development. The ramR gene restored growth of aerial hyphae and SapB formation in all bald strains tested (albeit only weakly in the bldC mutant), many of which are characterized by physiological defects. Disruption of the ramR gene abolished SapB biosynthesis and severely delayed growth of aerial hyphae. Transcription of ramR was developmentally controlled, and RamR function in vivo depended on its putative phosphorylation site (D53). We identified and mapped RamR targets immediately upstream of the region encoding ramC and ramS, a putative operon. Overexpression of ramR in the wild‐type strain increased SapB levels and caused a distinctive wrinkled surface topology. Based on these results, we propose that phenotypes of bald mutations reflect an early stage in the Streptomyces developmental programme similar to the spo0 mutations in the unicellular bacterium Bacillus subtilis, and that RamR has analogies to Spo0A, the Bacillus response regulator that integrates physiological signals before triggering endospore formation.


Molecular Microbiology | 2007

SapB and the chaplins: connections between morphogenetic proteins in Streptomyces coelicolor

David S. Capstick; Joanne M. Willey; Mark J. Buttner; Marie A. Elliot

Morphogenesis in the streptomycetes features the differentiation of substrate‐associated vegetative hyphae into upwardly growing aerial filaments. This transition requires the activity of bld genes and the secretion of biosurfactants that reduce the surface tension at the colony–air interface enabling the emergence of nascent aerial hyphae. Streptomyces coelicolor produces two classes of surface‐active molecules, SapB and the chaplins. While both molecules are important for aerial development, nothing is known about the functional redundancy or interaction of these surfactants apart from the observation that aerial hyphae formation can proceed via one of two pathways: a SapB‐dependent pathway when cells are grown on rich medium and a SapB‐independent pathway on poorly utilized carbon sources such as mannitol. We used mutant analysis to show that while the chaplins are important, but not required, for development on rich medium, they are essential for differentiation on MS (soy flour mannitol) medium, and the corresponding developmental defects could be suppressed by the presence of SapB. Furthermore, the chaplins are produced by conditional bld mutants during aerial hyphae formation when grown on the permissive medium, MS, suggesting that the previously uncharacterized SapB‐independent pathway is chaplin dependent. In contrast, a bld mutant blocked in aerial morphogenesis on all media makes neither SapB nor chaplins. Finally, we show that a constructed null mutant that lacks all chaplin and SapB biosynthetic genes fails to differentiate in any growth condition. We propose that the biosurfactant activities of both SapB and the chaplins are essential for normal aerial hyphae formation on rich medium, while chaplin biosynthesis and secretion alone drives aerial morphogenesis on MS medium.


Protein Expression and Purification | 2002

Production of recombinant endotoxin neutralizing protein in Pichia pastoris and methods for its purification

Erik J. Paus; Joanne M. Willey; Richard J. Ridge; Charles R Legg; Malcolm A. Finkelman; Thomas J. Novitsky; Paul A. Ketchum

Production of recombinant Limulus endotoxin neutralizing protein (rENP) was attained with the GS115 methylotrophic strain of Pichia pastoris transformed with a plasmid, bearing multiple ENP gene copies. The synthetic gene for Limulus ENP was cloned into the integrative plasmid pAO815 under the control of a methanol-inducible promoter. Clones containing a single enp insert were used to construct cassettes bearing 2 and 3 tandem copies of enp. These were then integrated at the HIS locus of P. pastoris GS115 (his4). Clones were chosen for their ability to produce rENP upon methanol induction in shaker flasks, and then the 1x, 2x, and 3x-enp strains were analyzed by Southern blot for the presence of the ENP gene(s). Isolate 3 x 5q, containing a 3x-enp cassette, was the best producer of rENP. Under optimal conditions this strain grown in a fed-batch mode produced yields of >500 mg rENP/L with an average of 5.46 mg rENP/g DCW. Purification of rENP from the clarified broth resulted in a yield of 35% and a purity of >86%. Glycosylated rENP, the main contaminant, was removed with a concanavalin-A column and characterized. The pure rENP neutralized lipopolysaccharide and had the mass, amino-acid composition and N-terminal sequence expected from the cloned gene.


Molecular Microbiology | 2012

Multi‐tier regulation of the streptomycete morphogenetic peptide SapB

Alisa A. Gaskell; Joseph Giovinazzo; Vanessa Fonte; Joanne M. Willey

Streptomyces coelicolor is a morphologically complex bacterium requiring the secretion of surface‐active proteins to progress through its life cycle. SapB represents an important class of these biosurfactants, as illustrated by its ability to restore aerial hyphae formation when applied exogenously to developmental mutants. However, such aerial hyphae fail to sporulate, exemplifying the need to co‐ordinate the timing of SapB production with other developmental events. SapB has an unusual lantibiotic structure. Its structural gene, ramS, is only 38 nucleotides downstream of the gene encoding its putative modification enzyme, RamC. Transient, co‐ordinated expression of the operon was thought to be controlled by the response regulator RamR. However, we show that ramS is transcribed throughout the cell cycle with a dual expression profile dissimilar to the tightly controlled ramC expression. Surprisingly, post‐translational modification relies on prior membrane localization of the precursor peptide, RamS, as demonstrated by the absence of RamS modification in S. coelicolor hyphae treated with the Bacillus subtilis lipoprotein surfactin. Our results demonstrate that interspecies interaction can also be mediated by interference of post‐translational events. Further, temporal and spatial regulation of irreversible post‐translational modification of a surface‐active morphogenetic peptide suggests a new model for the control of key developmental events.


Advances in medical education and practice | 2017

Contextualizing the relevance of basic sciences: small-group simulation with debrief for first- and second-year medical students in an integrated curriculum

Samara B Ginzburg; Judith Brenner; Thomas Kwiatkowski; Joanne M. Willey

Aim There has been a call for increased integration of basic and clinical sciences during preclinical years of undergraduate medical education. Despite the recognition that clinical simulation is an effective pedagogical tool, little has been reported on its use to demonstrate the relevance of basic science principles to the practice of clinical medicine. We hypothesized that simulation with an integrated science and clinical debrief used with early learners would illustrate the importance of basic science principles in clinical diagnosis and management of patients. Methods Small groups of first- and second-year medical students were engaged in a high-fidelity simulation followed by a comprehensive debrief facilitated by a basic scientist and clinician. Surveys including anchored and open-ended questions were distributed at the conclusion of each experience. Results The majority of the students agreed that simulation followed by an integrated debrief illustrated the clinical relevance of basic sciences (mean ± standard deviation: 93.8% ± 2.9% of first-year medical students; 96.7% ± 3.5% of second-year medical students) and its importance in patient care (92.8% of first-year medical students; 90.4% of second-year medical students). In a thematic analysis of open-ended responses, students felt that these experiences provided opportunities for direct application of scientific knowledge to diagnosis and treatment, improving student knowledge, simulating real-world experience, and developing clinical reasoning, all of which specifically helped them understand the clinical relevance of basic sciences. Conclusion Small-group simulation followed by a debrief that integrates basic and clinical sciences is an effective means of demonstrating the relationship between scientific fundamentals and patient care for early learners. As more medical schools embrace integrated curricula and seek opportunities for integration, our model is a novel approach that can be utilized.

Collaboration


Dive into the Joanne M. Willey's collaboration.

Top Co-Authors

Avatar

Albert A. Bowers

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Alexander R. Horswill

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julio A. Camarero

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Michael A. Fischbach

California Institute for Quantitative Biosciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge