Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joanne R. Mathiasen is active.

Publication


Featured researches published by Joanne R. Mathiasen.


Bioorganic & Medicinal Chemistry Letters | 2002

Mixed lineage kinase activity of indolocarbazole analogues

Chikara Murakata; Masami Kaneko; George Gessner; Thelma S. Angeles; Mark A. Ator; Teresa M. O'Kane; Beth Ann McKenna; Beth Ann Thomas; Joanne R. Mathiasen; Michael S. Saporito; Donna Bozyczko-Coyne; Robert L. Hudkins

The MLK1-3 activity for a series of analogues of the indolocarbazole K-252a is reported. Addition of 3,9-bis-alkylthiomethyl groups to K-252a results in potent and selective MLK inhibitors. The in vitro and in vivo survival promoting activity of bis-isopropylthiomethyl-K-252a (16, CEP-11004/KT-8138) is reported.


Journal of Pharmacology and Experimental Therapeutics | 2008

Correlation between ex Vivo Receptor Occupancy and Wake-Promoting Activity of Selective H3 Receptor Antagonists

Siyuan Le; John A. Gruner; Joanne R. Mathiasen; Michael J. Marino; Hervé Schaffhauser

The histamine H3 receptor (H3R) modulates the release of neurotransmitters that are involved in vigilance, cognition, and sleep-wake regulation. H3R antagonism has been proposed as a novel approach to the treatment of cognitive and attention deficit as well as sleep disorders. It is apparent that H3R antagonists produce pharmacological effects in preclinical animal models across a wide dose range. Several H3R antagonists were reported to be effective at producing cognitive enhancing effects at low doses, while producing robust wake enhancement at higher doses. To better understand the effect of H3R antagonists across a broad dose range, an ex vivo receptor binding assay has been used to estimate the degree of H3R occupancy in vivo. The H3R antagonists ciproxifan, thioperamide, GSK189254 (6-[(3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-pyridinecarboxamide hydrochloride), and ABT-239 ([4-(2-{2-[(2R)-2-methylpyrrolidinyl]ethyl}-benzofuran-5-yl)benzonitrile) produced wake-promoting activity in vivo and a dose-dependent inhibition of H3R binding ex vivo. For ciproxifan, thioperamide, and GSK189254, a relatively low level of cumulative wake activity was linearly correlated with up to 80% of the receptor occupancy. In contrast, an abrupt break from linearity and a robust increase of waking activity was observed at doses that produce greater than 80% occupancy. Our results suggest a relatively small increase of waking activity at low levels of receptor occupancy that may be consistent with reported enhancement of attention and cognitive function. Robust waking activity at higher levels of H3R occupancy may be mechanistically different from activities at low levels of H3R occupancy.


Journal of Medicinal Chemistry | 2011

Discovery and Characterization of 6-{4-[3-(R)-2-Methylpyrrolidin-1-yl)propoxy]phenyl}-2H-pyridazin-3-one (CEP-26401, Irdabisant): A Potent, Selective Histamine H3 Receptor Inverse Agonist

Robert L. Hudkins; Rita Raddatz; Ming Tao; Joanne R. Mathiasen; Lisa D. Aimone; Nadine C. Becknell; Catherine Prouty; Lars Jacob Stray Knutsen; Mehran Yazdanian; Gilbert Moachon; Mark A. Ator; John P. Mallamo; Michael J. Marino; Edward R. Bacon; Michael T. Williams

Optimization of a novel series of pyridazin-3-one histamine H(3) receptor (H(3)R) antagonists/inverse agonists identified 6-{4-[3-(R)-2-methylpyrrolidin-1-yl)propoxy]phenyl}-2H-pyridazin-3-one (8a, CEP-26401; irdabisant) as a lead candidate for potential use in the treatment of attentional and cognitive disorders. 8a had high affinity for both human (K(i) = 2.0 nM) and rat (K(i) = 7.2 nM) H(3)Rs with greater than 1000-fold selectivity over the hH(1)R, hH(2)R, and hH(4)R histamine receptor subtypes and against an in vitro panel of 418 G-protein-coupled receptors, ion channels, transporters, and enzymes. 8a demonstrated ideal pharmaceutical properties for a CNS drug in regard to water solubility, permeability and lipophilicity and had low binding to human plasma proteins. It weakly inhibited recombinant cytochrome P450 isoforms and human ether-a-go-go-related gene. 8a metabolism was minimal in rat, mouse, dog, and human liver microsomes, and it had good interspecies pharmacokinetic properties. 8a dose-dependently inhibited H(3)R agonist-induced dipsogenia in the rat (ED(50) = 0.06 mg/kg po). On the basis of its pharmacological, pharmaceutical, and safety profiles, 8a was selected for preclinical development. The clinical portions of the single and multiple ascending dose studies assessing safety and pharmacokinetics have been completed allowing for the initiation of a phase IIa for proof of concept.


Biochemical Pharmacology | 2009

Dimebolin is a 5-HT6 antagonist with acute cognition enhancing activities.

Hervé Schaffhauser; Joanne R. Mathiasen; Amy DiCamillo; Mark J. Huffman; Lily D. Lu; Beth Ann McKenna; Jie Qian; Michael J. Marino

Dimebolin (Dimebon), is a non-selective antihistamine approved in Russia for the treatment of allergy. Recently, this drug has been shown to be neuroprotective in cellular models of Alzheimers disease and Huntingtons disease, and to preserve cognitive function when chronically administered to AF64A lesioned rats. Interests in identifying the molecular targets of dimebolin have intensified with reports of efficacy in clinical trials with Alzheimers patients. Dimebolin has been found to interact with a number of molecular targets including acetylcholinesterases, N-methyl-d-aspartate receptors, and voltage-gated calcium channels, with potencies in the range of 5-50 microM. In the present study, the action of dimebolin at the serotonin 5-HT(6) receptor was investigated. Dimebolin binds with moderate affinity to both the human and rat recombinant 5-HT(6) receptor (K(i)=26.0+/-2.5 nM and 119.0+/-14.0 nM respectively) as well as the native rat 5-HT(6) receptor, and acts as an antagonist in functional cAMP assays. Furthermore, dimebolin occupies the 5-HT(6) receptor in vivo as assessed by ex vivo autoradiography, with a dose-occupancy relationship similar to that of the selective 5-HT(6) antagonist SB-399885. Finally, both SB-399885 and dimebolin produce an acute enhancement of short-term social recognition memory, although dimebolin is approximately 10-fold less potent than SB-399885. Taken together, these studies demonstrate that dimebolin antagonizes the 5-HT(6) receptor with higher affinity than other targets characterized to date, and suggest that this activity may play a role in the acute cognition enhancing effects of this compound in preclinical models and in the clinic.


Brain Research | 2004

Inhibition of mixed lineage kinase 3 attenuates MPP+-induced neurotoxicity in SH-SY5Y cells

Joanne R. Mathiasen; Beth Ann McKenna; Michael S. Saporito; Ghanashyam D. Ghadge; Raymond P. Roos; Beverly P. Holskin; Zhi-Liang Wu; Stephen P. Trusko; Thomas C. Connors; Anna C. Maroney; Beth Ann Thomas; Jeffrey C. Thomas; Donna Bozyczko-Coyne

The neuropathology of Parkinsons Disease has been modeled in experimental animals following MPTP treatment and in dopaminergic cells in culture treated with the MPTP neurotoxic metabolite, MPP(+). MPTP through MPP(+) activates the stress-activated c-Jun N-terminal kinase (JNK) pathway in mice and SH-SY5Y neuroblastoma cells. Recently, it was demonstrated that CEP-1347/KT7515 attenuated MPTP-induced nigrostriatal dopaminergic neuron degeneration in mice, as well as MPTP-induced JNK phosphorylation. Presumably, CEP-1347 acts through inhibition of at least one upstream kinase within the mixed lineage kinase (MLK) family since it has been shown to inhibit MLK 1, 2 and 3 in vitro. Activation of the MLK family leads to JNK activation. In this study, the potential role of MLK and the JNK pathway was examined in MPP(+)-induced cell death of differentiated SH-SY5Y cells using CEP-1347 as a pharmacological probe and dominant negative adenoviral constructs to MLKs. CEP-1347 inhibited MPP(+)-induced cell death and the morphological features of apoptosis. CEP-1347 also prevented MPP(+)-induced JNK activation in SH-SY5Y cells. Endogenous MLK 3 expression was demonstrated in SH-SY5Y cells through protein levels and RT-PCR. Adenoviral infection of SH-SY5Y cells with a dominant negative MLK 3 construct attenuated the MPP(+)-mediated increase in activated JNK levels and inhibited neuronal death following MPP(+) addition compared to cultures infected with a control construct. Adenoviral dominant negative constructs of two other MLK family members (MLK 2 and DLK) did not protect against MPP(+)-induced cell death. These studies show that inhibition of the MLK 3/JNK pathway attenuates MPP(+)-mediated SH-SY5Y cell death in culture and supports the mechanism of action of CEP-1347 as an MLK family inhibitor.


Journal of Pharmacology and Experimental Therapeutics | 2012

CEP-26401 (Irdabisant), a Potent and Selective Histamine H3 Receptor Antagonist/Inverse Agonist with Cognition-Enhancing and Wake-Promoting Activities

Rita Raddatz; Robert L. Hudkins; Joanne R. Mathiasen; John A. Gruner; Dorothy G. Flood; Lisa D. Aimone; Siyuan Le; Hervé Schaffhauser; Emir Duzic; Maciej Gasior; Donna Bozyczko-Coyne; Michael J. Marino; Mark A. Ator; Edward R. Bacon; John P. Mallamo; Michael T. Williams

CEP-26401 [irdabisant; 6-{4-[3-((R)-2-methyl-pyrrolidin-1-yl)-propoxy]-phenyl}-2H-pyridazin-3-one HCl] is a novel, potent histamine H3 receptor (H3R) antagonist/inverse agonist with drug-like properties. High affinity of CEP-26401 for H3R was demonstrated in radioligand binding displacement assays in rat brain membranes (Ki = 2.7 ± 0.3 nM) and recombinant rat and human H3R-expressing systems (Ki = 7.2 ± 0.4 and 2.0 ± 1.0 nM, respectively). CEP-26401 displayed potent antagonist and inverse agonist activities in [35S]guanosine 5′-O-(γ-thio)triphosphate binding assays. After oral dosing of CEP-26401, occupancy of H3R was estimated by the inhibition of ex vivo binding in rat cortical slices (OCC50 = 0.1 ± 0.003 mg/kg), and antagonism of the H3R agonist R-α-methylhistamine- induced drinking response in the rat dipsogenia model was demonstrated in a similar dose range (ED50 = 0.06 mg/kg). CEP-26401 improved performance in the rat social recognition model of short-term memory at doses of 0.01 to 0.1 mg/kg p.o. and was wake-promoting at 3 to 30 mg/kg p.o. In DBA/2NCrl mice, CEP-26401 at 10 and 30 mg/kg i.p. increased prepulse inhibition (PPI), whereas the antipsychotic risperidone was effective at 0.3 and 1 mg/kg i.p. Coadministration of CEP-26401 and risperidone at subefficacious doses (3 and 0.1 mg/kg i.p., respectively) increased PPI. These results demonstrate potent behavioral effects of CEP-26401 in rodent models and suggest that this novel H3R antagonist may have therapeutic utility in the treatment of cognitive and attentional disorders. CEP-26401 may also have therapeutic utility in treating schizophrenia or as adjunctive therapy to approved antipsychotics.


Journal of Medicinal Chemistry | 2008

Mixed-lineage kinase 1 and mixed-lineage kinase 3 subtype-selective dihydronaphthyl[3,4-a]pyrrolo[3,4-c]carbazole-5-ones: optimization, mixed-lineage kinase 1 crystallography, and oral in vivo activity in 1-methyl-4-phenyltetrahydropyridine models.

Robert L. Hudkins; James L. Diebold; Ming Tao; Kurt A. Josef; Chung Ho Park; Thelma S. Angeles; Lisa D. Aimone; Jean Husten; Mark A. Ator; Sheryl L. Meyer; Beverly P. Holskin; John T. Durkin; Alexander A. Fedorov; Elena V. Fedorov; Steven C. Almo; Joanne R. Mathiasen; Donna Bozyczko-Coyne; Michael S. Saporito; Richard W. Scott; John P. Mallamo

The optimization of the dihydronaphthyl[3,4-a]pyrrolo[3,4-c]carbazole-5-one R(2) and R(12) positions led to the identification of the first MLK1 and MLK3 subtype-selective inhibitors within the MLK family. Compounds 14 (CEP-5104) and 16 (CEP-6331) displayed good potency for MLK1 and MLK3 inhibition with a greater than 30- to 100-fold selectivity for related family members MLK2 and DLK. Compounds 14 and 16 were orally active in vivo in a mouse MPTP biochemical efficacy model that was comparable to the first-generation pan-MLK inhibitor 1 (CEP-1347). The MLK1 structure-activity relationships were supported by the first-reported X-ray crystal structure of MLK1 bound with 16.


Bioorganic & Medicinal Chemistry Letters | 2011

Identification of pyridazin-3-one derivatives as potent, selective histamine H3 receptor inverse agonists with robust wake activity

Robert L. Hudkins; Lisa D. Aimone; Thomas R. Bailey; Robert J. Bendesky; Reddeppa reddy Dandu; Derek Dunn; John A. Gruner; Kurt A. Josef; Yin-Guo Lin; Jacquelyn A. Lyons; Val R. Marcy; Joanne R. Mathiasen; Babu G. Sundar; Ming Tao; Allison L. Zulli; Rita Raddatz; Edward R. Bacon

H(3)R structure-activity relationships on a novel class of pyridazin-3-one H(3)R antagonists/inverse agonists are disclosed. Modifications of the pyridazinone core, central phenyl ring and linker led to the identification of molecules with excellent target potency, selectivity and pharmacokinetic properties. Compounds 13 and 21 displayed potent functional H(3)R antagonism in vivo in the rat dipsogenia model and demonstrated robust wake activity in the rat EEG/EMG model.


Journal of Medicinal Chemistry | 2012

Optimization of 5-Pyridazin-3-one Phenoxypropylamines as Potent, Selective Histamine H3 Receptor Antagonists with Potent Cognition Enhancing Activity

Ming Tao; Lisa D. Aimone; Zeqi Huang; Joanne R. Mathiasen; Rita Raddatz; Jacquelyn A. Lyons; Robert L. Hudkins

Previous studies have shown that (5-{4-[3-(R)-2-methylpyrrolin-1-yl-propoxy]phenyl}-2H-pyridazin-3-one) 2 had high affinity for both the human (hH(3)R K(i) = 2.8 nM) and rat H(3)Rs (rH(3)R K(i) = 8.5 nM) but displayed low oral bioavailability in the rat. Optimization of the 5-pyridazin-3-one R(2) and R(6) positions to improve the pharmacokinetic properties over 2 led to the identification of 5-{4-[3-(R)-2-methylpyrrolidin-1-yl)propoxy]phenyl}-2-pyridin-2-yl-2H-pyridazin-3-one 29. Compound 29 displayed high affinity for both human and rat H(3)Rs (hH(3)R K(i) = 1.7 nM, rH(3)R K(i) = 3.7 nM) with a greater than 1000-fold selectivity over the other histamine receptor subtypes and favorable pharmacokinetic properties across species (F = 78% rat, 92% dog, 96% monkey). It showed low binding to human plasma proteins, weakly inhibited cytochrome P450 isoforms, and displayed an excellent safety profile for a CNS-active compound. 29 displayed potent H(3)R antagonist activity in the brain in a rat dipsogenia model and demonstrated enhancement of cognitive function in a rat social recognition model at low doses. However, the development of compound 29 was discontinued because of genotoxicity.


Bioorganic & Medicinal Chemistry Letters | 2011

Synthesis and evaluation of pyridazinone–phenethylamine derivatives as selective and orally bioavailable histamine H3 receptor antagonists with robust wake-promoting activity

Reddeppa reddy Dandu; John A. Gruner; Joanne R. Mathiasen; Lisa D. Aimone; Greg A. Hostetler; Caitlyn Benfield; Robert J. Bendesky; Val R. Marcy; Rita Raddatz; Robert L. Hudkins

A series of pyridazinone-phenethylamine derivatives with moderate to low nanomolar affinity for rat and human H(3)R are described. These analogs exhibited excellent selectivity and metabolic stability, with acceptable rat pharmacokinetic properties. In vivo, 7 and 11 demonstrated potent H(3)R functional antagonism in the rat dipsogenia model and robust wake-promoting activity in the rat electroencephalogram/electromyography (EEG/EMG) model.

Collaboration


Dive into the Joanne R. Mathiasen's collaboration.

Researchain Logo
Decentralizing Knowledge