Joanne Sharp
University of Sheffield
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Joanne Sharp.
Applied Physics Letters | 2016
Wei-Gang Yang; N. A. Morley; Joanne Sharp; Ye Tian; W. Mark Rainforth
The manipulation of the strain-mediated magnetoelectric (ME) coupling strength is investigated by inserting a thin Ti layer (0–10 nm) between a 50 nm Co50Fe50 layer and a (011) oriented lead magnesium niobate-lead titanate (PMN-PT) substrate. A record high remanence ratio (Mr/Ms) tunability of 100% has been demonstrated in the 50 nm CoFe/8 nm Ti/PMN-PT heterostructure, when a total in-plane piezoelectric strain of −1821 ppm was applied at an electric field (E-field) of 16 kV/cm. The ME coupling strength is gradually optimized as the Ti layer thickness increases. Magnetic energy calculation showed that with increasing Ti layer thickness the uniaxial magnetic anisotropy energy (Euni) was reduced from 43 ± 1 kJ/m3 to 29.8 ± 1 kJ/m3. The reduction of Euni makes the strain effect dominant in the total magnetic energy, thus gives an obvious enhanced ME coupling strength.
Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science | 2016
Nik Reeves-McLaren; Joanne Sharp; Héctor Beltrán-Mir; W. Mark Rainforth; Anthony R. West
The transformation on heating LiCoMnO4, with a spinel structure, to LiCoMnO3, with a cation-disordered rock salt structure, accompanied by loss of 25% of the oxygen, has been followed using a combination of diffraction, microscopy and spectroscopy techniques. The transformation does not proceed by a topotactic mechanism, even though the spinel and rock salt phases have a similar, cubic close-packed oxygen sublattice. Instead, the transformation passes through two stages involving, first, precipitation of Li2MnO3, leaving behind a Li-deficient, Co-rich non-stoichiometric spinel and, second, rehomogenization of the two-phase assemblage, accompanied by additional oxygen loss, to give the homogeneous rock salt final product; a combination of electron energy loss spectroscopy and X-ray absorption near edge structure analyses showed oxidation states of Co2+ and Mn3+ in LiCoMnO3. Subsolidus phase diagram determination of the Li2O-CoOx-MnOy system has established the compositional extent of spinel solid solutions at approximately 500°C.
Journal of Physics D | 2015
Wei-Gang Yang; N. A. Morley; Joanne Sharp; W. Mark Rainforth
Co50Fe50/(0 1 1)-oriented lead magnesium niobate–lead titanate (PMN–PT) multiferroic (MF) heterostructures were fabricated by RF sputtering magnetic films onto PMN–PT substrates. The effect of magnetic layer thickness (30 nm to 100 nm) on the magnetoelectric (ME) coupling in the heterostructures was studied independently, due to the almost constant magnetostriction constant (λ = 40 ± 5 ppm) and similar as-grown magnetic anisotropies for all studied magnetic layer thicknesses. A record high remanence ratio (M r/M s) tunability of 95% has been demonstrated in the 65 nm Co50Fe50/PMN–PT heterostructure, corresponding to a large ME constant (α) of 2.5 × 10−6 s m−1, when an external electric field (E-field) of 9 kV cm−1 was applied. Such an MF heterostructure provides considerable opportunities for E-field-controlled multifunctional devices.
Archive | 2017
Dikai Guan; W. Mark Rainforth; Joanne Sharp; Junheng Gao
In this paper, the thermal stability of cryomilled nanocrystalline (NC) AZ31 powder was evaluated by annealing at elevated temperature ranging from 350 to 450 °C. The results show the NC AZ31 powder exhibited excellent thermal stability during short anneals at 350–450 °C, and the mechanisms were investigated in detail. There were two separate growth stages with a transition point at around 400 °C. More specifically, between 350 and 400 °C, NC Mg grains were stable at approximately 32 nm, even after 1 h annealing. At 450 °C, the nano grains grew to 37 nm in the first 5 min and grew quickly to approximately 60 nm after 15 min. However, the grain growth was limited when the annealing time was increased to 60 min. The average grain size remained stable less than approximately 60 nm even after long anneals at temperatures as high as 450 °C (0.78 T/TM), indicating an outstanding degree of grain size stability. This excellent thermal stability can be mainly attributed to solute drag and Zener pinning.
Journal of Physics: Conference Series | 2015
Joanne Sharp; I Castillo Muller; Paranjayee Mandal; A Abbas; G West; W.M. Rainforth; Arutiun P. Ehiasarian; Papken Eh. Hovsepian
A FIB lift-out sample was made from a wear-resistant carbon coating deposited by high power impulse magnetron sputtering (HIPIMS) with Mo and W. TEM analysis found columnar grains extending the whole ∼1800 nm thick film. Within the grains, the carbon was found to be organised into clusters showing some onion-like structure, with amorphous material between them; energy dispersive X-ray spectroscopy (EDS) found these clusters to be Mo- and W-rich in a later, thinner sample of the same material. Electron energy-loss spectroscopy (EELS) showed no difference in C-K edge, implying the bonding type to be the same in cluster and matrix. These clusters were arranged into stripes parallel to the film plane, of spacing 7-8 nm; there was a modulation in spacing between clusters within these stripes that produced a second, coarser set of striations of spacing ∼37 nm.
Acta Materialia | 2015
Junheng Gao; Joanne Sharp; Dikai Guan; W. Mark Rainforth; I. Todd
Acta Materialia | 2017
Dikai Guan; W. Mark Rainforth; Junheng Gao; Joanne Sharp; Brad Wynne; Le Ma
Scripta Materialia | 2017
Dikai Guan; John Nutter; Joanne Sharp; Junheng Gao; W. Mark Rainforth
Journal of Alloys and Compounds | 2016
Dikai Guan; W. Mark Rainforth; Joanne Sharp; Junheng Gao; I. Todd
Wear | 2017
Itzel Castillo Müller; Joanne Sharp; W. Mark Rainforth; Papken Eh. Hovsepian; Arutiun P. Ehiasarian