Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joanne Trgovcich is active.

Publication


Featured researches published by Joanne Trgovcich.


Journal of Cellular and Molecular Medicine | 2014

Methodological challenges in utilizing miRNAs as circulating biomarkers.

Leni Moldovan; Kara Batte; Joanne Trgovcich; Jon Wisler; Clay B. Marsh; Melissa G. Piper

MicroRNAs (miRNAs) have emerged as important regulators in the post‐transcriptional control of gene expression. The discovery of their presence not only in tissues but also in extratissular fluids, including blood, urine and cerebro‐spinal fluid, together with their changes in expression in various pathological conditions, has implicated these extracellular miRNAs as informative biomarkers of disease. However, exploiting miRNAs in this capacity requires methodological rigour. Here, we report several key procedural aspects of miRNA isolation from plasma and serum, as exemplified by research in cardiovascular and pulmonary diseases. We also highlight the advantages and disadvantages of various profiling methods to determine the expression levels of plasma‐ and serum‐derived miRNAs. Attention to such methodological details is critical, as circulating miRNAs become diagnostic tools for various human diseases.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Disruption of T helper 2-immune responses in Epstein–Barr virus-induced gene 3-deficient mice

Edward E. S. Nieuwenhuis; Markus F Neurath; Nadia Corazza; Hideki Iijima; Joanne Trgovcich; Stefan Wirtz; Jonathan N. Glickman; Dan T. Bailey; Masaru Yoshida; Peter R. Galle; Mitchell Kronenberg; Mark Birkenbach; Richard S. Blumberg

Epstein–Barr virus-induced gene 3 (EBI3) is a widely expressed IL-12p40-related protein that associates as a heterodimer with either IL-12p35 or an IL-12p35 homologue, p28, to create a new cytokine (IL-27). To define the function of EBI3 in vivo, we generated knockout mice in which the ebi3 gene was targeted by homologous recombination. EBI3−/− mice exhibited normal numbers of both naive and mature CD4+ and CD8+ T cells and B cells, but markedly decreased numbers of invariant natural killer T cells (iNKT) as defined by staining with an α-galactosylceramide (αGalCer)-loaded CD1d-tetramer. iNKT cells from EBI3−/− mice exhibited decreased IL-4 and, to a lesser extent, IFN-γ production after αGalCer stimulation in vitro. A sustained decrease in IL-4 production was also observed in EBI3−/− mice after αGalCer stimulation in vivo in contrast to IFN-γ production, which was only transiently decreased under such stimulation. Notably, EBI3−/− mice were resistant to the induction of immunopathology associated with oxazolone-induced colitis, a colitis model mediated primarily by T helper (Th) 2-type cytokine production by iNKT cells. In contrast, trinitrobenzene sulfonic acid-induced colitis, a predominantly Th1-mediated colitis model, was unaffected. Thus, EBI3 plays a critical regulatory role in the induction of Th2-type immune responses and the development of Th2-mediated tissue inflammation in vivo, which may be mediated through the control of iNKT cell function.


Journal of Virology | 2006

Lipopolysaccharide, Tumor Necrosis Factor Alpha, or Interleukin-1β Triggers Reactivation of Latent Cytomegalovirus in Immunocompetent Mice

Charles H. Cook; Joanne Trgovcich; Peter D. Zimmerman; Yingxue Zhang; Daniel D. Sedmak

ABSTRACT We have previously shown that cytomegalovirus (CMV) can reactivate in lungs of nonimmunosuppressed patients during critical illness. Our recent work has shown that polymicrobial bacterial sepsis can trigger reactivation of latent murine CMV (MCMV). We hypothesize that MCMV reactivation following bacterial sepsis may be caused by inflammatory mediators. To test this hypothesis, BALB/c mice latently infected with Smith strain MCMV received sublethal intraperitoneal doses of lipopolysaccharide (LPS), tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), or saline. Lung tissue homogenates were evaluated for viral reactivation 3 weeks after mediator injection. Because LPS is known to signal via Toll-like receptor 4 (TLR-4) in mice, further studies blocking this signaling mechanism were performed using monoclonal MTS510. Finally, mice were tested with intravenous TNF-α to determine whether this would cause reactivation. All mice receiving sublethal intraperitoneal doses of LPS, TNF-α, or IL-1β had pulmonary reactivation of latent MCMV 3 weeks following injection, and LPS caused MCMV reactivation with kinetics similar to those for sepsis. When TLR-4 signaling was blocked, exogenous LPS did not reactivate latent MCMV. Intravenous TNF-α administration at near-lethal doses did not reactivate MCMV. Exogenous intraperitoneal LPS, TNF-α, and IL-1β are all capable of reactivating CMV from latency in lungs of previously healthy mice. LPS reactivation of MCMV appears dependent on TLR-4 signaling. Interestingly, intravenous TNF-α did not trigger reactivation, suggesting possible mechanistic differences that are discussed. We conclude that inflammatory disease states besides sepsis may be capable of reactivating CMV from latency.


PLOS Pathogens | 2012

Degradation of cellular mir-27 by a novel, highly abundant viral transcript is important for efficient virus replication in vivo.

Lisa Marcinowski; Mélanie Tanguy; Astrid Krmpotić; Bernd Rädle; Vanda Juranić Lisnić; Lee Tuddenham; Béatrice Chane-Woon-Ming; Zsolt Ruzsics; Florian Erhard; Corinna Benkartek; Marina Babic; Ralf Zimmer; Joanne Trgovcich; Ulrich H. Koszinowski; Stipan Jonjić; Sébastien Pfeffer; Lars Dölken

Cytomegaloviruses express large amounts of viral miRNAs during lytic infection, yet, they only modestly alter the cellular miRNA profile. The most prominent alteration upon lytic murine cytomegalovirus (MCMV) infection is the rapid degradation of the cellular miR-27a and miR-27b. Here, we report that this regulation is mediated by the ∼1.7 kb spliced and highly abundant MCMV m169 transcript. Specificity to miR-27a/b is mediated by a single, apparently optimized, miRNA binding site located in its 3′-UTR. This site is easily and efficiently retargeted to other cellular and viral miRNAs by target site replacement. Expression of the 3′-UTR of m169 by an adenoviral vector was sufficient to mediate its function, indicating that no other viral factors are essential in this process. Degradation of miR-27a/b was found to be accompanied by 3′-tailing and -trimming. Despite its dramatic effect on miRNA stability, we found this interaction to be mutual, indicating potential regulation of m169 by miR-27a/b. Most interestingly, three mutant viruses no longer able to target miR-27a/b, either due to miRNA target site disruption or target site replacement, showed significant attenuation in multiple organs as early as 4 days post infection, indicating that degradation of miR-27a/b is important for efficient MCMV replication in vivo.


Journal of Virology | 2002

Cell Surface Major Histocompatibility Complex Class II Proteins Are Regulated by the Products of the γ134.5 and UL41 Genes of Herpes Simplex Virus 1

Joanne Trgovcich; David C. Johnson; Bernard Roizman

ABSTRACT Modulation of host immune responses has emerged as a common strategy employed by herpesviruses both to establish life-long infections and to affect recovery from infection. Herpes simplex virus 1 (HSV-1) blocks the major histocompatibility complex (MHC) class I antigen presentation pathway by inhibiting peptide transport into the endoplasmic reticulum. The interaction of viral gene products with the MHC class II pathway, however, has not been thoroughly investigated, although CD4+ T cells play an important role in human recovery from infection. We have investigated the stability, distribution, and state of MHC class II proteins in glioblastoma cells infected with wild-type HSV-1 or mutants lacking specific genes. We report the following findings. (i) Wild-type virus infection caused a decrease in the accumulation of class II protein on the surface of cells and a decrease in the endocytosis of lucifer yellow or dextran conjugated to fluorescein isothiocyanate but no decrease in the total amount of MHC class II proteins relative to the levels seen in mock-infected cells. (ii) Although the total amount of MHC class II protein remained unchanged, the amounts of cell surface MHC class II proteins were higher in cells infected with the UL41-negative mutant, which lacks the virion host shutoff protein, and especially high in cells infected with the γ134.5-negative mutant. We conclude that infected cells attempt to respond to infection by increased acquisition of antigens and transport of MHC class II proteins to the cell surface and that these responses are blocked in part by the virion host shutoff protein encoded by the UL41 gene and in large measure by the direct or indirect action of the infected cell protein 34.5, the product of the γ134.5 gene.


Journal of Immunology | 2012

Increased Th17 and Regulatory T Cell Responses in EBV-Induced Gene 3-Deficient Mice Lead to Marginally Enhanced Development of Autoimmune Encephalomyelitis

Jin-Qing Liu; Zhenzhen Liu; Xuejun Zhang; Yun Shi; Fatemeh Talebian; Joseph W. Carl; Chuan Yu; Fu-Dong Shi; Caroline C. Whitacre; Joanne Trgovcich; Xue-Feng Bai

EBV-induced gene 3 (EBI3)-encoded protein can form heterodimers with IL-27P28 and IL-12P35 to form IL-27 and IL-35. IL-27 and IL-35 may influence autoimmunity by inhibiting Th17 differentiation and facilitating the inhibitory roles of Foxp3+ regulatory T (Treg) cells, respectively. In this study, we have evaluated the development of experimental autoimmune encephalomyelitis (EAE) in EBI3-deficient mice that lack both IL-27 and IL-35. We found that myelin oligodendrocyte glycoprotein peptide immunization resulted in marginally enhanced EAE development in EBI3-deficient C57BL6 and 2D2 TCR-transgenic mice. EBI3 deficiency resulted in significantly increased Th17 and Th1 responses in the CNS and increased T cell production of IL-2 and IL-17 in the peripheral lymphoid organs. EBI3-deficient and -sufficient 2D2 T cells had equal ability in inducing EAE in Rag1−/− mice; however, more severe disease was induced in EBI3−/−Rag1−/− mice than in Rag1−/− mice by 2D2 T cells. EBI3-deficient mice had increased numbers of CD4+Foxp3+ Treg cells in peripheral lymphoid organs. More strikingly, EBI3-deficient Treg cells had more potent suppressive functions in vitro and in vivo. Thus, our data support an inhibitory role for EBI3 in Th17, Th1, IL-2, and Treg responses. Although these observations are consistent with the known functions of IL-27, the IL-35 contribution to the suppressive functions of Treg cells is not evident in this model. Increased Treg responses in EBI3−/− mice may explain why the EAE development is only modestly enhanced compared with wild-type mice.


Journal of Virology | 2007

Antisense Transcription in the Human Cytomegalovirus Transcriptome

Guojuan Zhang; Bindu Raghavan; Mark Kotur; Jacquelyn Cheatham; Daniel D. Sedmak; Charles H. Cook; James Waldman; Joanne Trgovcich

ABSTRACT Human cytomegalovirus (HCMV) infections are prevalent in human populations and can cause serious diseases, especially in those with compromised or immature immune systems. The HCMV genome of 230 kb is among the largest of the herpesvirus genomes. Although the entire sequence of the laboratory-adapted AD169 strain of HCMV has been available for 18 years, the precise number of viral genes is still in question. We undertook an analysis of the HCMV transcriptome as an approach to enumerate and analyze the gene products of HCMV. Transcripts of HCMV-infected fibroblasts were isolated at different times after infection and used to generate cDNA libraries representing different temporal classes of viral genes. cDNA clones harboring viral sequences were selected and subjected to sequence analysis. Of the 604 clones analyzed, 45% were derived from genomic regions predicted to be noncoding. Additionally, at least 55% of the cDNA clones in this study were completely or partially antisense to known or predicted HCMV genes. The remarkable accumulation of antisense transcripts during infection suggests that currently available genomic maps based on open-reading-frame and other in silico analyses may drastically underestimate the true complexity of viral gene products. These findings also raise the possibility that aspects of both the HCMV life cycle and genome organization are influenced by antisense transcription. Correspondingly, virus-derived noncoding and antisense transcripts may shed light on HCMV pathogenesis and may represent a new class of targets for antiviral therapies.


PLOS Pathogens | 2013

Dual Analysis of the Murine Cytomegalovirus and Host Cell Transcriptomes Reveal New Aspects of the Virus-Host Cell Interface

Vanda Juranić Lisnić; Marina Babić Čač; Berislav Lisnić; Tihana Trsan; Adam L Mefferd; Chitrangada Das Mukhopadhyay; Charles H. Cook; Stipan Jonjić; Joanne Trgovcich

Major gaps in our knowledge of pathogen genes and how these gene products interact with host gene products to cause disease represent a major obstacle to progress in vaccine and antiviral drug development for the herpesviruses. To begin to bridge these gaps, we conducted a dual analysis of Murine Cytomegalovirus (MCMV) and host cell transcriptomes during lytic infection. We analyzed the MCMV transcriptome during lytic infection using both classical cDNA cloning and sequencing of viral transcripts and next generation sequencing of transcripts (RNA-Seq). We also investigated the host transcriptome using RNA-Seq combined with differential gene expression analysis, biological pathway analysis, and gene ontology analysis. We identify numerous novel spliced and unspliced transcripts of MCMV. Unexpectedly, the most abundantly transcribed viral genes are of unknown function. We found that the most abundant viral transcript, recently identified as a noncoding RNA regulating cellular microRNAs, also codes for a novel protein. To our knowledge, this is the first viral transcript that functions both as a noncoding RNA and an mRNA. We also report that lytic infection elicits a profound cellular response in fibroblasts. Highly upregulated and induced host genes included those involved in inflammation and immunity, but also many unexpected transcription factors and host genes related to development and differentiation. Many top downregulated and repressed genes are associated with functions whose roles in infection are obscure, including host long intergenic noncoding RNAs, antisense RNAs or small nucleolar RNAs. Correspondingly, many differentially expressed genes cluster in biological pathways that may shed new light on cytomegalovirus pathogenesis. Together, these findings provide new insights into the molecular warfare at the virus-host interface and suggest new areas of research to advance the understanding and treatment of cytomegalovirus-associated diseases.


Journal of Virology | 2006

Human Cytomegalovirus Protein pp71 Disrupts Major Histocompatibility Complex Class I Cell Surface Expression

Joanne Trgovcich; Colleen M. Cebulla; Pete Zimmerman; Daniel D. Sedmak

ABSTRACT The human cytomegalovirus tegument protein pp71 is the product of the UL82 gene. Roles for pp71 in stimulating gene transcription, increasing infectivity of viral DNA, and the degradation of retinoblastoma family proteins have been described. Here we report a novel function for pp71 in limiting accumulation of cell surface major histocompatibility complex (MHC) class I complexes. MHC molecules were analyzed in glioblastoma cells exposed to a replication-defective adenovirus expressing UL82 (Adpp71) or after transient transfection of the UL82 gene. Accumulation of cell surface MHC class I levels diminished in a specific and dose-dependent manner after exposure to Adpp71 but not after exposure to an adenovirus expressing β-galactosidase (Adβgal). UL82 expression did not interfere with accumulation of either MHC class I heavy-chain transcript or protein, nor did UL82 expression correlate with markers of apoptosis. Rather, UL82 expression correlated with an increased proportion of MHC class I molecules exhibiting sensitivity to endoglycosidase H treatment. Finally, we show that, in cells infected with recombinant virus strain missing all of the unique short region MHC class I evasion genes, disruption of UL82 expression by short, interfering RNAs led to increased accumulation of cell surface MHC class I complexes. These findings support a novel role for HCMV pp71 in disruption of the MHC class I antigen presentation pathway.


PLOS ONE | 2008

A Role for Cytoplasmic PML in Cellular Resistance to Viral Infection

Beth A. McNally; Joanne Trgovcich; Gerd G. Maul; Yang Liu; Pan Zheng

PML gene was discovered as a fusion partner with retinoic acid receptor (RAR) α in the t(15:17) chromosomal translocation associated with acute promyelocytic leukemia (APL). Nuclear PML protein has been implicated in cell growth, tumor suppression, apoptosis, transcriptional regulation, chromatin remodeling, DNA repair, and anti-viral defense. The localization pattern of promyelocytic leukemia (PML) protein is drastically altered during viral infection. This alteration is traditionally viewed as a viral strategy to promote viral replication. Although multiple PML splice variants exist, we demonstrate that the ratio of a subset of cytoplasmic PML isoforms lacking exons 5 & 6 is enriched in cells exposed to herpes simplex virus-1 (HSV-1). In particular, we demonstrate that a PML isoform lacking exons 5 & 6, called PML Ib, mediates the intrinsic cellular defense against HSV-1 via the cytoplasmic sequestration of the infected cell protein (ICP) 0 of HSV-1. The results herein highlight the importance of cytoplasmic PML and call for an alternative, although not necessarily exclusive, interpretation regarding the redistribution of PML that is seen in virally infected cells.

Collaboration


Dive into the Joanne Trgovcich's collaboration.

Top Co-Authors

Avatar

Charles H. Cook

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge