Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joanne Wang is active.

Publication


Featured researches published by Joanne Wang.


Nature Genetics | 2009

Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci

Philip L. De Jager; Xiaoming Jia; Joanne Wang; Paul I. W. de Bakker; Linda Ottoboni; Neelum T. Aggarwal; Laura Piccio; Soumya Raychaudhuri; Dong Tran; Cristin Aubin; Rebeccah Briskin; Susan Romano; Sergio E. Baranzini; Jacob L. McCauley; Margaret A. Pericak-Vance; Jonathan L. Haines; Rachel A. Gibson; Yvonne Naeglin; Bernard M. J. Uitdehaag; Paul M. Matthews; Ludwig Kappos; Chris H. Polman; Wendy L. McArdle; David P. Strachan; Denis A. Evans; Anne H. Cross; Mark J. Daly; Alastair Compston; Stephen Sawcer; Howard L. Weiner

We report the results of a meta-analysis of genome-wide association scans for multiple sclerosis (MS) susceptibility that includes 2,624 subjects with MS and 7,220 control subjects. Replication in an independent set of 2,215 subjects with MS and 2,116 control subjects validates new MS susceptibility loci at TNFRSF1A (combined P = 1.59 × 10−11), IRF8 (P = 3.73 × 10−9) and CD6 (P = 3.79 × 10−9). TNFRSF1A harbors two independent susceptibility alleles: rs1800693 is a common variant with modest effect (odds ratio = 1.2), whereas rs4149584 is a nonsynonymous coding polymorphism of low frequency but with stronger effect (allele frequency = 0.02; odds ratio = 1.6). We also report that the susceptibility allele near IRF8, which encodes a transcription factor known to function in type I interferon signaling, is associated with higher mRNA expression of interferon-response pathway genes in subjects with MS.


Human Molecular Genetics | 2009

Genome-wide association analysis of susceptibility and clinical phenotype in multiple sclerosis

Sergio E. Baranzini; Joanne Wang; Rachel A. Gibson; Nicholas W. Galwey; Yvonne Naegelin; Frederik Barkhof; Ernst Wilhelm Radue; Raija L.P. Lindberg; Bernard Uitdehaag; Michael R. Johnson; Aspasia Angelakopoulou; Leslie Hall; Jill C. Richardson; Rab K. Prinjha; Achim Gass; Jeroen J. G. Geurts; Madeleine H. Sombekke; Hugo Vrenken; Pamela Qualley; Robin Lincoln; Refujia Gomez; Stacy J. Caillier; Michaela F. George; Hourieh Mousavi; Rosa Guerrero; Darin T. Okuda; Bruce Cree; Ari J. Green; Emmanuelle Waubant; Douglas S. Goodin

Multiple sclerosis (MS), a chronic disorder of the central nervous system and common cause of neurological disability in young adults, is characterized by moderate but complex risk heritability. Here we report the results of a genome-wide association study performed in a 1000 prospective case series of well-characterized individuals with MS and group-matched controls using the Sentrix HumanHap550 BeadChip platform from Illumina. After stringent quality control data filtering, we compared allele frequencies for 551 642 SNPs in 978 cases and 883 controls and assessed genotypic influences on susceptibility, age of onset, disease severity, as well as brain lesion load and normalized brain volume from magnetic resonance imaging exams. A multi-analytical strategy identified 242 susceptibility SNPs exceeding established thresholds of significance, including 65 within the MHC locus in chromosome 6p21.3. Independent replication confirms a role for GPC5, a heparan sulfate proteoglycan, in disease risk. Gene ontology-based analysis shows a functional dichotomy between genes involved in the susceptibility pathway and those affecting the clinical phenotype.


Human Molecular Genetics | 2009

Pathway and network-based analysis of genome-wide association studies in multiple sclerosis

Sergio E. Baranzini; Nicholas W. Galwey; Joanne Wang; Pouya Khankhanian; Raija L.P. Lindberg; Daniel Pelletier; Wen Wu; Bernard M. J. Uitdehaag; Ludwig Kappos; Chris H. Polman; Paul M. Matthews; Stephen L. Hauser; Rachel A. Gibson; Jorge R. Oksenberg; Michael R. Barnes

Genome-wide association studies (GWAS) testing several hundred thousand SNPs have been performed in multiple sclerosis (MS) and other complex diseases. Typically, the number of markers in which the evidence for association exceeds the genome-wide significance threshold is very small, and markers that do not exceed this threshold are generally neglected. Classical statistical analysis of these datasets in MS revealed genes with known immunological functions. However, many of the markers showing modest association may represent false negatives. We hypothesize that certain combinations of genes flagged by these markers can be identified if they belong to a common biological pathway. Here we conduct a pathway-oriented analysis of two GWAS in MS that takes into account all SNPs with nominal evidence of association (P < 0.05). Gene-wise P-values were superimposed on a human protein interaction network and searches were conducted to identify sub-networks containing a higher proportion of genes associated with MS than expected by chance. These sub-networks, and others generated at random as a control, were categorized for membership of biological pathways. GWAS from eight other diseases were analyzed to assess the specificity of the pathways identified. In the MS datasets, we identified sub-networks of genes from several immunological pathways including cell adhesion, communication and signaling. Remarkably, neural pathways, namely axon-guidance and synaptic potentiation, were also over-represented in MS. In addition to the immunological pathways previously identified, we report here for the first time the potential involvement of neural pathways in MS susceptibility.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Mapping of multiple susceptibility variants within the MHC region for 7 immune-mediated diseases

John D. Rioux; Philippe Goyette; Timothy J. Vyse; Lennart Hammarström; Michelle M. A. Fernando; Todd Green; Philip L. De Jager; Sylvain Foisy; Joanne Wang; Paul I. W. de Bakker; Stephen Leslie; Gilean McVean; Leonid Padyukov; Lars Alfredsson; Vito Annese; David A. Hafler; Ritva Matell; Stephen Sawcer; Alastair Compston; Bruce Cree; Daniel B. Mirel; Mark J. Daly; Timothy W. Behrens; Lars Klareskog; Peter K. Gregersen; Jorge R. Oksenberg; Stephen L. Hauser

The human MHC represents the strongest susceptibility locus for autoimmune diseases. However, the identification of the true predisposing gene(s) has been handicapped by the strong linkage disequilibrium across the region. Furthermore, most studies to date have been limited to the examination of a subset of the HLA and non-HLA genes with a marker density and sample size insufficient for mapping all independent association signals. We genotyped a panel of 1,472 SNPs to capture the common genomic variation across the 3.44 megabase (Mb) classic MHC region in 10,576 DNA samples derived from patients with systemic lupus erythematosus, Crohns disease, ulcerative colitis, rheumatoid arthritis, myasthenia gravis, selective IgA deficiency, multiple sclerosis, and appropriate control samples. We identified the primary association signals for each disease and performed conditional regression to identify independent secondary signals. The data demonstrate that MHC associations with autoimmune diseases result from complex, multilocus effects that span the entire region.


JAMA Neurology | 2008

Genome-Wide Pharmacogenomic Analysis of the Response to Interferon Beta Therapy in Multiple Sclerosis

Esther Byun; Stacy J. Caillier; Xavier Montalban; Pablo Villoslada; Oscar Fernández; David Brassat; Manuel Comabella; Joanne Wang; Lisa F. Barcellos; Sergio E. Baranzini; Jorge R. Oksenberg

OBJECTIVE To identify promising candidate genes linked to interindividual differences in the efficacy of interferon beta therapy. Recombinant interferon beta therapy is widely used to reduce disease activity in multiple sclerosis (MS). However, up to 50% of patients continue to have relapses and worsening disability despite therapy. DESIGN We used a genome-wide pharmacogenomic approach to identify single-nucleotide polymorphism (SNP) allelic differences associated with interferon beta therapy response. SETTING Four collaborating centers in the Mediterranean Basin. Data Coordination Center at the University of California, San Francisco. PATIENTS A cohort of 206 patients with relapsing-remitting MS followed up prospectively for 2 years after initiation of treatment. INTERVENTION DNA was pooled and hybridized to Affymetrix 100K GeneChips. Pooling schemes were designed to minimize confounding batch effects and increase confidence by technical replication. MAIN OUTCOME MEASURES Single-nucleotide polymorphism detection. Comparison of allelic frequencies between good responders and nonresponders to interferon beta therapy. RESULTS A multianalytical approach detected significant associations between several SNPs and treatment response, which were validated by individual DNA genotyping on an independent platform. After the validation stage was complete, 81 additional individuals were added to the analysis to increase power. We found that responders and nonresponders had significantly different genotype frequencies for SNPs located in many genes, including glypican 5, collagen type XXV alpha1, hyaluronan proteoglycan link protein, calpastatin, and neuronal PAS domain protein 3. CONCLUSIONS The reported results address the question of genetic heterogeneity in MS and the response to immunotherapy by analysis of the correlation between different genotypes and clinical response to interferon beta therapy. Many of the detected differences between responders and nonresponders were genes associated with ion channels and signal transduction pathways. The study also suggests that genetic variants in heparan sulfate proteoglycan genes may be of clinical interest in MS as predictors of the response to therapy. In addition to new insights into the mechanistic biology of interferon beta, these results help define the molecular basis of interferon beta therapy response heterogeneity.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Abrogation of T cell quiescence characterizes patients at high risk for multiple sclerosis after the initial neurological event

Jean-Christophe Corvol; Daniel Pelletier; Roland G. Henry; Stacy J. Caillier; Joanne Wang; Derek Pappas; Simona Casazza; Darin T. Okuda; Stephen L. Hauser; Jorge R. Oksenberg; Sergio E. Baranzini

Clinically isolated syndrome (CIS) refers to the earliest clinical manifestation of multiple sclerosis (MS). Currently there are no prognostic biological markers that accurately predict conversion of CIS to clinically definite MS (CDMS). Furthermore, the earliest molecular events in MS are still unknown. We used microarrays to study gene expression in naïve CD4+ T cells from 37 CIS patients at time of diagnosis and after 1 year. Supervised machine-learning methods were used to build predictive models of disease conversion. We identified 975 genes whose expression segregated CIS patients into four distinct subgroups. A subset of 108 genes further discriminated patients in one of these (group 1) from other CIS patients. Remarkably, 92% of patients in group 1 converted to CDMS within 9 months. Consistent down-regulation of TOB1, a critical regulator of cell proliferation, was characteristic of group 1 patients. Decreased TOB1 expression at the RNA and protein levels also was confirmed in experimental autoimmune encephalomyelitis. Finally, a genetic association was observed between TOB1 variation and MS progression in an independent cohort. These results indicate that CIS patients at high risk of conversion have impaired regulation of T cell quiescence, possibly resulting in earlier activation of pathogenic CD4+ cells.


Human Molecular Genetics | 2010

Evidence for CRHR1 in multiple sclerosis using supervised machine learning and meta-analysis in 12 566 individuals

Farren Briggs; Selena E. Bartlett; Benjamin A. Goldstein; Joanne Wang; Jacob L. McCauley; Rebecca L. Zuvich; Philip L. De Jager; John D. Rioux; Adrian J. Ivinson; Alastair Compston; David A. Hafler; Stephen L. Hauser; Jorge R. Oksenberg; Stephen Sawcer; Margaret A. Pericak-Vance; Jonathan L. Haines; Lisa F. Barcellos

The primary genetic risk factor in multiple sclerosis (MS) is the HLA-DRB1*1501 allele; however, much of the remaining genetic contribution to MS has yet to be elucidated. Several lines of evidence support a role for neuroendocrine system involvement in autoimmunity which may, in part, be genetically determined. Here, we comprehensively investigated variation within eight candidate hypothalamic-pituitary-adrenal (HPA) axis genes and susceptibility to MS. A total of 326 SNPs were investigated in a discovery dataset of 1343 MS cases and 1379 healthy controls of European ancestry using a multi-analytical strategy. Random Forests, a supervised machine-learning algorithm, identified eight intronic SNPs within the corticotrophin-releasing hormone receptor 1 or CRHR1 locus on 17q21.31 as important predictors of MS. On the basis of univariate analyses, six CRHR1 variants were associated with decreased risk for disease following a conservative correction for multiple tests. Independent replication was observed for CRHR1 in a large meta-analysis comprising 2624 MS cases and 7220 healthy controls of European ancestry. Results from a combined meta-analysis of all 3967 MS cases and 8599 controls provide strong evidence for the involvement of CRHR1 in MS. The strongest association was observed for rs242936 (OR = 0.82, 95% CI = 0.74-0.90, P = 9.7 × 10(-5)). Replicated CRHR1 variants appear to exist on a single associated haplotype. Further investigation of mechanisms involved in HPA axis regulation and response to stress in MS pathogenesis is warranted.


Human Immunology | 2007

The autoimmune disease-associated IL12B and IL23R polymorphisms in multiple sclerosis.

Ann B. Begovich; Monica Chang; Stacy J. Caillier; David Lew; Joseph J. Catanese; Joanne Wang; Stephen L. Hauser; Jorge R. Oksenberg


Clinical Immunology | 2009

F.27. Meta-analysis of Genome Scans and Replication Identify CD6, ICSBP1, and TNFRSF1A as Novel Multiple Sclerosis Susceptibility Loci

Philip L. De Jager; Paul I. W. de Bakker; Joanne Wang; Linda Ottoboni; Stephen L. Hauser; Jorge R. Oksenberg; David A. Hafler


Clinical Immunology | 2006

F.85. Peripheral Generation of Antigen-Specific Treg in a Model of Systemic Autoimmunity

Birgit Knoechel; Jens Lohr; Joanne Wang; Abul K. Abbas

Collaboration


Dive into the Joanne Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge