João B. Vicente
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by João B. Vicente.
Cellular Microbiology | 2009
João B. Vicente; Gretchen M. Ehrenkaufer; Lígia M. Saraiva; Miguel Teixeira; Upinder Singh
Upon host infection, the protozoan parasite Entamoeba histolytica is confronted with reactive oxygen and nitrogen species and must survive these stresses in order to cause invasive disease. We analysed the parasites response to oxidative and nitrosative stresses, probing the transcriptional changes of trophozoites of a pathogenic strain after a 60 min exposure to H2O2 (1 mM) or a NO donor (dipropylenetriamine‐NONOate, 200 μM), using whole‐genome DNA microarrays. Genes encoding reactive oxygen and nitrogen species detoxification enzymes had high transcriptional levels under basal conditions and upon exposure to both stresses. On a whole‐genome level, there was significant modulation of gene expression by H2O2 (286 genes regulated) and dipropylenetriamine‐NONOate (1036 genes regulated) with a significant overlap of genes modulated under both conditions (164 genes). A number of transcriptionally regulated genes were in signalling/regulatory and repair/metabolic pathways. However, the majority of genes with altered transcription encode unknown proteins, suggesting as yet unraveled response pathways in E. histolytica. Trophozoites of a non‐pathogenic E. histolytica strain had a significantly muted transcriptional response to H2O2 compared with the pathogenic strain, hinting that differential response to oxidative stress may be one factor that contributes to the pathogenic potential of E. histolytica.
Advances in Microbial Physiology | 2004
Lígia M. Saraiva; João B. Vicente; Miguel Teixeira
The flavodiiron proteins (first named as A-type flavoproteins) constitute a large superfamily of enzymes, widespread among anaerobic and facultative anaerobic prokaryotes, from both the Archaea and Bacteria domains. Noticeably, genes encoding for homologous enzymes are also present in the genomes of some pathogenic and anaerobic amitochondriate protozoa. The fingerprint of this enzyme family is the conservation of a two-domain structural core, built by a metallo-beta-lactamase-like domain, at the N-terminal region, harbouring a non-heme diiron site, and a flavodoxin-like domain, containing one FMN moiety. These enzymes have a significant nitric oxide reductase activity, and there is increasing evidence that they are involved in microbial resistance to nitric oxide. In this review, we will discuss available data for this novel family of enzymes, including their physicochemical properties, structural and phylogenetic analyses, enzymatic properties and the molecular genetic approaches so far used to tackle their function.
Journal of the American Chemical Society | 2012
Pedro M. S. D. Cal; João B. Vicente; Elisabete Pires; Ana V. Coelho; Luis F. Veiros; Carlos Cordeiro; Pedro M. P. Gois
Protein modification has entered the limelight of chemical and biological sciences, since, by appending small molecules into proteins surfaces, fundamental biological and biophysical processes may be studied and even modulated in a physiological context. Herein we present a new strategy to modify the lysines ε-amino group and the proteins N-terminal, based on the formation of stable iminoboronates in aqueous media. This functionality enables the stable and complete modification of these amine groups, which can be reversible upon the addition of fructose, dopamine, or glutathione. A detailed DFT study is also presented to rationalize the observed stability toward hydrolysis of the iminoboronate constructs.
Biochemical and Biophysical Research Communications | 2002
João B. Vicente; Cláudio M. Gomes; Alain Wasserfallen; Miguel Teixeira
The A-type flavoproteins (ATF) are modular proteins involved in multi-component electron transfer pathways, having oxygen reductase activity. They are complex flavoproteins containing two distinct structural domains, one having an FMN in a flavodoxin-like fold and the other a binuclear iron centre within a metallo-beta-lactamase-like fold. Here, we report the purification and characterisation of a recombinant ATF from the cyanobacterium Synechoystis sp. PCC 6803, which has the unique feature of comprising an additional third domain with similarities towards flavin:NAD(P)H reductases. The latter was expressed independently as a truncated protein form and found to be capable of receiving electrons from NADH as well as to indiscriminately bind either one FAD or one FMN with equivalent affinities. Further kinetic studies have shown that the intact ATF is an NADH:oxygen oxidoreductase, with the catalytic ability to fully reduce oxygen to water. Thus, this constitutes an example on how structural modules found within partner proteins from an electron transfer pathway can be combined in a single polypeptide chain achieving identical catalytic activities.
Journal of Bacteriology | 2006
Rute Rodrigues; João B. Vicente; Rute C. Félix; Solange Oliveira; Miguel Teixeira; Claudina Rodrigues-Pousada
Desulfovibrio gigas flavodiiron protein (FDP), rubredoxin:oxygen oxidoreductase (ROO), was proposed to be the terminal oxidase of a soluble electron transfer chain coupling NADH oxidation to oxygen reduction. However, several members from the FDP family, to which ROO belongs, revealed nitric oxide (NO) reductase activity. Therefore, the protection afforded by ROO against the cytotoxic effects of NO was here investigated. The NO and oxygen reductase activities of recombinant ROO in vitro were tested by amperometric methods, and the enzyme was shown to effectively reduce NO and O(2). Functional complementation studies of an Escherichia coli mutant strain lacking the ROO homologue flavorubredoxin, an NO reductase, showed that ROO restores the anaerobic growth phenotype of cultures exposed to otherwise-toxic levels of exogenous NO. Additional studies in vivo using a D. gigas roo-deleted strain confirmed an increased sensitivity to NO of the mutant strain in comparison to the wild type. This effect is more pronounced when using the nitrosating agent S-nitrosoglutathione (GSNO), which effectively impairs the growth of the D. gigas Deltaroo strain. roo is constitutively expressed in D. gigas under all conditions tested. However, real-time reverse transcription-PCR analysis revealed a twofold induction of mRNA levels upon exposure to GSNO, suggesting regulation at the transcription level by NO. The newly proposed role of D. gigas ROO as an NO reductase combined with the O(2) reductase activity reveals a versatility which appears to afford protection to D. gigas at the onset of both oxidative and nitrosative stresses.
FEBS Letters | 2006
Vera L. Gonçalves; Lígia S. Nobre; João B. Vicente; Miguel Teixeira; Lígia M. Saraiva
Flavohemoglobins and flavodiiron proteins are two families of enzymes involved in nitrosative detoxification. However, the physiological oxygen‐related conditions under which they work and their relative role are still a matter of debate. To address this question we analyzed the function of the putative flavohemoprotein of Staphylococcus aureus, an organism that lacks a flavodiiron‐like gene. In this report we show that the recombinant protein contains all features typical of canonical flavohemoglobins and that the transcription of flavohemoglobin gene was upregulated by nitrosative stress in an oxygen‐dependent manner. However, and in contrast to other bacterial flavohemoglobins, the S. aureus protein has no apparent role in aerobic nitrosative protection, being only beneficial when cells of S. aureus are submitted to nitrosative stress in a microaerophilic environment. The in vivo data corroborates the proposal that Hmp acts physiologically as a denitrosylase.
Archives of Biochemistry and Biophysics | 2009
João B. Vicente; Fabrizio Testa; Daniela Mastronicola; Elena Forte; Paolo Sarti; Miguel Teixeira; Alessandro Giuffrè
Flavodiiron proteins (FDPs) are enzymes identified in prokaryotes and a few pathogenic protozoa, which protect microorganisms by reducing O(2) to H(2)O and/or NO to N(2)O. Unlike most prokaryotic FDPs, the protozoan enzymes from the human pathogens Giardia intestinalis and Trichomonas vaginalis are selective towards O(2). UV/vis and EPR spectroscopy showed that, differently from the NO-consuming bacterial FDPs, the Giardia FDP contains an FMN with reduction potentials for the formation of the single and the two-electron reduced forms very close to each other (E(1)=-66+/-15mV and E(2)=-83+/-15mV), a condition favoring destabilization of the semiquinone radical. Giardia FDP contains also a non-heme diiron site with significantly up-shifted reduction potentials (E(1)=+163+/-20mV and E(2)=+2+/-20mV). These properties are common to the Trichomonas hydrogenosomal FDP, and likely reflect yet undetermined subtle structural differences in the protozoan FDPs, accounting for their marked O(2) specificity.
Journal of Biological Chemistry | 2014
João B. Vicente; Henrique G. Colaço; Marisa I.S. Mendes; Paolo Sarti; Paula Leandro; Alessandro Giuffrè
Background: The H2S-generating human enzyme cystathionine β-synthase (CBS) is inhibited by NO• and CO. Results: NO• binds to the ferrous heme in human CBS much more quickly than CO and much more tightly than currently thought. Conclusion: Results support the physiological role of NO• in CBS regulation. Significance: CBS may integrate the cross-talk among NO•, CO, and H2S, major modulators in human (patho)physiology. The hexa-coordinate heme in the H2S-generating human enzyme cystathionine β-synthase (CBS) acts as a redox-sensitive regulator that impairs CBS activity upon binding of NO• or CO at the reduced iron. Despite the proposed physiological relevance of this inhibitory mechanism, unlike CO, NO• was reported to bind at the CBS heme with very low affinity (Kd = 30–281 μm). This discrepancy was herein reconciled by investigating the NO• reactivity of recombinant human CBS by static and stopped-flow UV-visible absorption spectroscopy. We found that NO• binds tightly to the ferrous CBS heme, with an apparent Kd ≤0.23 μm. In line with this result, at 25 °C, NO• binds quickly to CBS (kon ∼ 8 × 103 m−1 s−1) and dissociates slowly from the enzyme (koff ∼ 0.003 s−1). The observed rate constants for NO• binding were found to be linearly dependent on [NO•] up to ∼ 800 μm NO•, and >100-fold higher than those measured for CO, indicating that the reaction is not limited by the slow dissociation of Cys-52 from the heme iron, as reported for CO. For the first time the heme of human CBS is reported to bind NO• quickly and tightly, providing a mechanistic basis for the in vivo regulation of the enzyme by NO•. The novel findings reported here shed new light on CBS regulation by NO• and its possible (patho)physiological relevance, enforcing the growing evidence for an interplay among the gasotransmitters NO•, CO, and H2S in cell signaling.
International Journal for Parasitology | 2012
Elena Rastew; João B. Vicente; Upinder Singh
The protozoan parasite, Entamoeba histolytica, invades the host colon causing significant tissue destruction and inflammation. Upon host infection, the parasite is confronted with reactive oxygen and nitrogen species (ROS/RNS) that cause large-scale changes in gene expression profiles, which likely support the parasites adaptation to the host environment. We have previously identified oxidative and nitrosative stress responsive genes using whole-genome expression profiling. Functional studies on two such genes are now reported and demonstrate that they have roles in parasite virulence. EHI_056680 encodes a small hypothetical protein named E. histolytica stress-induced adhesion factor (EhSIAF); EHI_188210 encodes a putative phospholipid transporting P-type ATPase/flippase (EhPTPA). Over-expression of each protein in E. histolytica trophozoites enhanced parasite survival in response to oxidative stress. Exposure to oxidative and nitrosative stress did not affect the localization of EhSIAF or EhPTPA but markedly increased EhPTPA protein levels. Interestingly, over-expression of each gene resulted in parasites with increased adherence to healthy mammalian cells, but increased adherence to apoptotic cells was noted only in EhSIAF over-expressing parasites. However, despite having increased adherence to both healthy and apoptotic host cells, EhSIAF-over-expressing parasites were reduced in their ability to destroy mammalian cell monolayers, raising the intriguing possibility that EhSIAF over-expression caused signaling defects or resulted in a dominant negative phenotype. Over-expression of EhSIAF and EhPTPA also resulted in decreased motility in a transwell motility assay. Thus, we have confirmed that two genes that are upregulated by ROS confer increased resistance to oxidative stress and have identified an unexpected role of EhSIAF and EhPTPA in host cell adherence and a role of EhSIAF in parasite virulence. Our data imply that stress response genes may play multi-factorial roles in amoebic pathogenesis.
Eukaryotic Cell | 2012
João B. Vicente; Vy Thao Tran; Liliana Pinto; Miguel Teixeira; Upinder Singh
ABSTRACT We report the characterization of a bacterial-type oxygen reductase abundant in the cytoplasm of the anaerobic protozoan parasite Entamoeba histolytica. Upon host infection, E. histolytica is confronted with various oxygen tensions in the host intestine, as well as increased reactive oxygen and nitrogen species at the site of local tissue inflammation. Resistance to oxygen-derived stress thus plays an important role in the pathogenic potential of E. histolytica. The genome of E. histolytica has four genes that encode flavodiiron proteins, which are bacterial-type oxygen or nitric oxide reductases and were likely acquired by lateral gene transfer from prokaryotes. The EhFdp1 gene has higher expression in virulent than in nonvirulent Entamoeba strains and species, hinting that the response to oxidative stress may be one correlate of virulence potential. We demonstrate that EhFdp1 is abundantly expressed in the cytoplasm of E. histolytica and that the protein levels are markedly increased (up to ∼5-fold) upon oxygen exposure. Additionally, we produced fully functional recombinant EhFdp1 and demonstrated that this enzyme is a specific and robust oxygen reductase but has poor nitric oxide reductase activity. This observation represents a new mechanism of oxygen resistance in the anaerobic protozoan pathogen E. histolytica.