Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where João C. Diniz da Costa is active.

Publication


Featured researches published by João C. Diniz da Costa.


Scientific Reports | 2015

Structural and functional investigation of graphene oxide-Fe3O4 nanocomposites for the heterogeneous Fenton-like reaction.

Nor Aida Zubir; Christelle Yacou; Julius Motuzas; Xiwang Zhang; João C. Diniz da Costa

Graphene oxide–iron oxide (GO–Fe3O4) nanocomposites were synthesised by co-precipitating iron salts onto GO sheets in basic solution. The results showed that formation of two distinct structures was dependent upon the GO loading. The first structure corresponds to a low GO loading up to 10 wt%, associated with the beneficial intercalation of GO within Fe3O4 nanoparticles and resulting in higher surface area up to 409 m2 g−1. High GO loading beyond 10 wt% led to the aggregation of Fe3O4 nanoparticles and the undesirable stacking of GO sheets. The presence of strong interfacial interactions (Fe-O-C bonds) between both components at low GO loading lead to 20% higher degradation of Acid Orange 7 than the Fe3O4 nanoparticles in heterogeneous Fenton-like reaction. This behaviour was attributed to synergistic structural and functional effect of the combined GO and Fe3O4 nanoparticles.


Separation and Purification Technology | 2003

Performance of hydrophobic and hydrophilic silica membrane reactors for the water gas shift reaction

S. Giessler; Luke Jordan; João C. Diniz da Costa; Gao Qing Lu

In this study, a novel molecular sieve silica (MSS) membrane packed bed reactor (PBR) using a Cu/ZnO/Al2O3 catalyst was applied to the low-temperature water gas shift reaction (WGS). Best permeation results were H-2 permeances of 1.5 x 10(-6) mol(.)s(-1) m(-2) Pa-1, H-2/CO2 selectivities of 8 and H-2/N-2 selectivities of 18. It was shown that an operation with a sweep gas flow of 80 cm 3 min(-1), a feed flow rate of 50 cm(3) min(-1) and a H2O/CO molar ratio of one at 280 degreesC reached a 99% CO conversion. This is well above the thermodynamic equilibrium and achievable PBR conversion. Hydrophilic membranes underwent pore widening during the reaction while hydrophobic membranes indicated no such behaviour and also showed increased H-2 permeation with temperature, a characteristic of activated transport


Journal of Materials Chemistry | 2005

Proton conductivity of mesoporous sol–gel zirconium phosphates for fuel cell applications

Warren H.J. Hogarth; João C. Diniz da Costa; John Drennan; Gao Qing Lu

Zirconium phosphate has been extensively studied as a proton conductor for proton exchange membrane (PEM) fuel cell applications. Here we report the synthesis of mesoporous, templated sol–gel zirconium phosphate for use in PEM applications in an effort to determine its suitability for use as a surface functionalised, solid acid proton conductor in the future. Mesoporous zirconium phosphates were synthesised using an acid–base pair mechanism with surface areas between 78 and 177 m2 g−1 and controlled pore sizes in the range of 2–4 nm. TEM characterisation confirmed the presence of a wormhole like pore structure. The conductivity of such materials was up to 4.1 × 10−6 S cm−1 at 22 °C and 84% relative humidity (RH), while humidity reduction resulted in a conductivity decrease by more than an order of magnitude. High temperature testing on the samples confirmed their dependence on hydration for proton conduction and low hydroscopic nature. It was concluded that while the conductivity of these materials is low compared to Nafion, they may be a good candidate as a surface functionalised solid acid proton conductor due to their high surface area, porous structure and inherent ability to conduct protons.


Chemical Communications | 2015

The sacrificial role of graphene oxide in stabilising a Fenton-like catalyst GO–Fe3O4

Nor Aida Zubir; Christelle Yacou; Julius Motuzas; Xiwang Zhang; X. S. Zhao; João C. Diniz da Costa

Owing to the electron donor-acceptor properties of GO, the active sites ([triple bond, length as m-dash]Fe(2+)) of Fe3O4 are not oxidised ([triple bond, length as m-dash]Fe(3+)) in the heterogeneous Fenton-like reaction. GO plays a sacrificial role via the oxidation of (C[double bond, length as m-dash]C) carbon domains, and transferring electrons to Fe3O4. Therefore, GO-Fe3O4 confers superior catalytic efficiency, recyclability and longevity, otherwise not available in Fe3O4.


Journal of Colloid and Interface Science | 2012

Cobalt oxide silica membranes for desalination

Chun Xiang C. Lin; Li Ping Ding; Simon Smart; João C. Diniz da Costa

This work shows for the first time the potential of cobalt oxide silica (CoO(x)Si) membranes for desalination of brackish (1 wt.% NaCl), seawater (3.5 wt.% NaCl) and brine (7.5-15 wt.% NaCl) concentrations at feed temperatures between 25 and 75 °C. CoO(x)Si xerogels were synthesised via a sol-gel method including TEOS, cobalt nitrate hydrate and peroxide. Initial hydrothermal exposure (<2 days) of xerogels prepared with various pH (3-6) resulted in densification of the xerogel via condensation reactions within the silica matrix, with the xerogel synthesised at pH 5 the most resistant. Subsequent exposure was not found to significantly alter the pore structure of the xerogels, suggesting they were hydrostable and that the pore sizes remained at molecular sieving dimensions. Membranes were then synthesised using identical sol-gel conditions to the xerogel samples and testing showed that elevated feed temperatures resulted in increased water fluxes, whilst increasing the saline feed concentration resulted in decreased water fluxes. The maximum flux observed was 1.8 kg m(-2) h(-1) at 75 °C for a 1 wt.% NaCl feed concentration. The salt rejection was consistently in excess of 99%, independent of either the testing temperature or salt feed concentration.


Journal of Materials Chemistry | 2009

Phosphonic acid functionalized silicas for intermediate temperature proton conduction

Yonggang Jin; Shi Zhang Qiao; Zhi Ping Xu; Zhimin Yan; Yining Huang; João C. Diniz da Costa; Gao Qing Lu

Highly proton conductive silicas with phosphonic acid functionalization were synthesized by co-condensation of diethylphosphatoethyltriethoxysilane (DPTS) and tetraethoxysilane in a sol-gel process, followed by acidification of the phosphonate groups. These functionalized silicas with various phosphonic acid contents were extensively characterized to examine their structures and properties; in particular their intermediate temperature proton conductivity at 100–150 °C were systematically investigated under a variety of relative humidity (RH) conditions. The prepared samples have a mesoporous or nonporous structure depending on the DPTS amount used in the synthesis, and show high thermal stability under inert and oxidative atmospheres. We found that the present silicas still exhibit water-dependent proton conduction, but their conductivity under low humidity conditions has been significantly enhanced by up to two orders of magnitude compared to those phosphonic acid functionalized silicas previously reported. Herein, the highest conductivity has been obtained at 150 °C ranging from 4.4 × 10−4 S cm−1 at 20% RH to 0.031 S cm−1 at 100% RH. In general, proton conductivity is largely influenced by the content of phosphonic acid and the porous structure of the materials. Notably, the uniform mesostructure with a high surface area was found to greatly improve the proton conductivity at low humidity. The vehicle mechanism dominates the proton conduction at high humidity, whereas the conductivity at low humidity is likely a consequence of the structure diffusion (the Grotthuss mechanism). In addition, these materials are insoluble in water, rendering a practical suitability for fuel cell applications.


Scientific Reports | 2013

Reversible Redox Effect on Gas Permeation of Cobalt Doped Ethoxy Polysiloxane (ES40) Membranes

Christopher R. Miller; David K. Wang; Simon Smart; João C. Diniz da Costa

This work reports the remarkable effect of reversible gas molecular sieving for high temperature gas separation from cobalt doped ethoxy polysiloxane (CoES40) membranes. This effect stemmed from alternating the reducing and oxidising (redox) state of the cobalt particles embedded in the ES40 matrix. The reduced membranes gave the best H2 permeances of 1 × 10−6 mol m−2 s−1 Pa−1 and H2/N2 permselectivities of 65. The reduction process tailored a molecular gap attributed to changes in the specific volume between the reduced cobalt (Co(OH)2 and CoO) particles in the ES40 structure, thus allowing for the increased diffusion of gases. Upon re-oxidation, the tailored molecular gap became constricted as the particles reversed to Co3O4 resulting a lower gas diffusion, particularly for the larger gases ie. CO2 and N2. The ES40 matrix proved to be structurally rigid enough to withstand the reversible redox effect of cobalt particles across multiple cycles.


Membranes | 2013

Performance and Long Term Stability of Mesoporous Silica Membranes for Desalination

Muthia Elma; Christelle Yacou; João C. Diniz da Costa; David K. Wang

This work shows the preparation of silica membranes by a two-step sol-gel method using tetraethyl orthosilicate in ethanolic solution by employing nitric acid and ammonia as co-catalysts. The sols prepared in pH 6 resulted in the lowest concentration of silanol (Si–OH) species to improve hydrostability and the optimized conditions for film coating. The membrane was tested to desalinate 0.3–15 wt % synthetic sodium chloride (NaCl) solutions at a feed temperature of 22 °C followed by long term membrane performance of up to 250 h in 3.5 wt % NaCl solution. Results show that the water flux (and salt rejection) decrease with increasing salt concentration delivering an average value of 9.5 kg m–2 h–1 (99.6%) and 1.55 kg m–2 h–1 (89.2%) from the 0.3 and 15 wt % saline feed solutions, respectively. Furthermore, the permeate salt concentration was measured to be less than 600 ppm for testing conditions up to 5 wt % saline feed solutions, achieving below the recommended standard for potable water. Long term stability shows that the membrane performance in water flux was stable for up to 150 h, and slightly reduced from thereon, possibly due to the blockage of large hydrated ions in the micropore constrictions of the silica matrix. However, the integrity of the silica matrix was not affected by the long term testing as excellent salt rejection of >99% was maintained for over 250 h.


Colloids and Surfaces A: Physicochemical and Engineering Aspects | 2001

Characterisation of templated xerogels for molecular sieve application

João C. Diniz da Costa; Gao Qing Lu; Victor Rudolph

This paper presents the results of the characterisation of templated silica xerogels as precursor material for molecular sieve silica membranes for gas separation. The template agent integrated in the xerogel matrix is a methyl ligand covalently bended to the siloxane network in the form of methyltriethoxysilane (MTES). Several surface and microstructural characterisation techniques such as TGA, FTIR, NMR, and nitrogen adsorption have been employed to obtain information on the reaction mechanisms involved in the sol-gel processing of such molecular sieves. The characterisation results show the effects of processing parameters such as heat treatment temperature, and the concentration of the covalently bonded template on the development of the pore structure. It was found that calcination temperature significantly enhanced the condensation reactions thus resulted in more Si-O-Si groups being formed. This was also confirmed with the data of FTIR characterisation showing enhanced silicon bands at higher heat treatment temperatures. As a result of the promoted densification and shrinkable pore network the micropore volume also reduced with increasing methyl ligand molar ratio. However, the mean pore diameter does not change significantly with calcination temperature. While the contribution of the templates towards controlling pore size is less precise, increasing the methyl ligand molar ratio results in the broadening of the pore size distribution and lower pore volume. Higher template concentration induces the collapse of the xerogel matrix due to capillary stress promoting dense xerogels with low pore volume (C) 2001 Elsevier Science B.V. All rights reserved.


Materials | 2011

Preparation, characterization and performance of templated silica membranes in non-osmotic desalination

Bradley P. Ladewig; Ying Han Tan; Chun Xiang C. Lin; Katharina Ladewig; João C. Diniz da Costa; Simon Smart

In this work we investigate the potential of a polyethylene glycol-polypropylene glycol-polyethylene glycol, tri-block copolymer as a template for a hybrid carbon/silica membrane for use in the non-osmotic desalination of seawater. Silica samples were loaded with varying amounts of tri-block copolymer and calcined in a vacuum to carbonize the template and trap it within the silica matrix. The resultant xerogels were analyzed with FTIR, Thermogravimetric analysis (TGA) and N2 sorption techniques, wherein it was determined that template loadings of 10 and 20% produced silica networks with enhanced pore volumes and appropriately sized pores for desalination. Membranes were created via two different routes and tested with feed concentrations of 3, 10 and 35 ppk of NaCl at room temperature employing a transmembrane pressure drop of <1 atm. All membranes demonstrated a salt rejection capacity of >85% (in most cases >95%) and fluxes higher than 1.6 kg m−2 h−1. Furthermore, the carbonized templated membranes displayed equal or improved performance compared to similarly prepared non-templated silica membranes, with the best results of a flux of 3.7 kg m−2 h−1 with 98.5% salt rejection capacity, exceeding previous literature reports. In addition, the templated silica membranes exhibited superior hydrostability demonstrating their potential for long-term operation.

Collaboration


Dive into the João C. Diniz da Costa's collaboration.

Top Co-Authors

Avatar

Simon Smart

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Julius Motuzas

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

David K. Wang

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paula Louro

Instituto Superior de Engenharia de Lisboa

View shared research outputs
Top Co-Authors

Avatar

M. Fernandes

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Gao Qing Lu

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

M. Vieira

Instituto Superior de Engenharia de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Maria Manuela Almeida Carvalho Vieira

Instituto Superior de Engenharia de Lisboa

View shared research outputs
Researchain Logo
Decentralizing Knowledge