Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where João C.R. Cardoso is active.

Publication


Featured researches published by João C.R. Cardoso.


BMC Genomics | 2010

Insights into shell deposition in the Antarctic bivalve Laternula elliptica: gene discovery in the mantle transcriptome using 454 pyrosequencing

Melody S. Clark; Michael A. S. Thorne; Florbela A. Vieira; João C.R. Cardoso; Deborah M. Power; Lloyd S. Peck

BackgroundThe Antarctic clam, Laternula elliptica, is an infaunal stenothermal bivalve mollusc with a circumpolar distribution. It plays a significant role in bentho-pelagic coupling and hence has been proposed as a sentinel species for climate change monitoring. Previous studies have shown that this mollusc displays a high level of plasticity with regard to shell deposition and damage repair against a background of genetic homogeneity. The Southern Ocean has amongst the lowest present-day CaCO3 saturation rate of any ocean region, and is predicted to be among the first to become undersaturated under current ocean acidification scenarios. Hence, this species presents as an ideal candidate for studies into the processes of calcium regulation and shell deposition in our changing ocean environments.Results454 sequencing of L. elliptica mantle tissue generated 18,290 contigs with an average size of 535 bp (ranging between 142 bp-5.591 kb). BLAST sequence similarity searching assigned putative function to 17% of the data set, with a significant proportion of these transcripts being involved in binding and potentially of a secretory nature, as defined by GO molecular function and biological process classifications. These results indicated that the mantle is a transcriptionally active tissue which is actively proliferating. All transcripts were screened against an in-house database of genes shown to be involved in extracellular matrix formation and calcium homeostasis in metazoans. Putative identifications were made for a number of classical shell deposition genes, such as tyrosinase, carbonic anhydrase and metalloprotease 1, along with novel members of the family 2 G-Protein Coupled Receptors (GPCRs). A membrane transport protein (SEC61) was also characterised and this demonstrated the utility of the clam sequence data as a resource for examining cold adapted amino acid substitutions. The sequence data contained 46,235 microsatellites and 13,084 Single Nucleotide Polymorphisms(SNPs/INDELS), providing a resource for population and also gene function studies.ConclusionsThis is the first 454 data from an Antarctic marine invertebrate. Sequencing of mantle tissue from this non-model species has considerably increased resources for the investigation of the processes of shell deposition and repair in molluscs in a changing environment. A number of promising candidate genes were identified for functional analyses, which will be the subject of further investigation in this species and also used in model-hopping experiments in more tractable and economically important model aquaculture species, such as Crassostrea gigas and Mytilus edulis.


BMC Evolutionary Biology | 2006

Evolution of secretin family GPCR members in the metazoa

João C.R. Cardoso; Vanda C. Pinto; Florbela A. Vieira; Melody S. Clark; Deborah M. Power

BackgroundComparative approaches using protostome and deuterostome data have greatly contributed to understanding gene function and organismal complexity. The family 2 G-protein coupled receptors (GPCRs) are one of the largest and best studied hormone and neuropeptide receptor families. They are suggested to have arisen from a single ancestral gene via duplication events. Despite the recent identification of receptor members in protostome and early deuterostome genomes, relatively little is known about their function or origin during metazoan divergence. In this study a comprehensive description of family 2 GPCR evolution is given based on in silico and expression analyses of the invertebrate receptor genes.ResultsFamily 2 GPCR members were identified in the invertebrate genomes of the nematodes C. elegans and C. briggsae, the arthropods D. melanogaster and A. gambiae (mosquito) and in the tunicate C. intestinalis. This suggests that they are of ancient origin and have evolved through gene/genome duplication events. Sequence comparisons and phylogenetic analyses have demonstrated that the immediate gene environment, with regard to gene content, is conserved between the protostome and deuterostome receptor genomic regions. Also that the protostome genes are more like the deuterostome Corticotrophin Releasing Factor (CRF) and Calcitonin/Calcitonin Gene-Related Peptide (CAL/CGRP) receptors members than the other family 2 GPCR members. The evolution of family 2 GPCRs in deuterostomes is characterised by acquisition of new family members, with SCT (Secretin) receptors only present in tetrapods. Gene structure is characterised by an increase in intron number with organismal complexity with the exception of the vertebrate CAL/CGRP receptors.ConclusionThe family 2 GPCR members provide a good example of gene duplication events occurring in tandem with increasing organismal complexity during metazoan evolution. The putative ancestral receptors are proposed to be more like the deuterostome CAL/CGRP and CRF receptors and this may be associated with their fundamental role in calcium regulation and the stress response, both of which are essential for survival.


BMC Evolutionary Biology | 2010

The serendipitous origin of chordate secretin peptide family members

João C.R. Cardoso; Florbela A. Vieira; Ana Gomes; Deborah M. Power

BackgroundThe secretin family is a pleotropic group of brain-gut peptides with affinity for class 2 G-protein coupled receptors (secretin family GPCRs) proposed to have emerged early in the metazoan radiation via gene or genome duplications. In human, 10 members exist and sequence and functional homologues and ligand-receptor pairs have been characterised in representatives of most vertebrate classes. Secretin-like family GPCR homologues have also been isolated in non-vertebrate genomes however their corresponding ligands have not been convincingly identified and their evolution remains enigmatic.ResultsIn silico sequence comparisons failed to retrieve a non-vertebrate (porifera, cnidaria, protostome and early deuterostome) secretin family homologue. In contrast, secretin family members were identified in lamprey, several teleosts and tetrapods and comparative studies revealed that sequence and structure is in general maintained. Sequence comparisons and phylogenetic analysis revealed that PACAP, VIP and GCG are the most highly conserved members and two major peptide subfamilies exist; i) PACAP-like which includes PACAP, PRP, VIP, PH, GHRH, SCT and ii) GCG-like which includes GCG, GLP1, GLP2 and GIP. Conserved regions flanking secretin family members were established by comparative analysis of the Takifugu, Xenopus, chicken and human genomes and gene homologues were identified in nematode, Drosophila and Ciona genomes but no gene linkage occurred. However, in Drosophila and nematode genes which flank vertebrate secretin family members were identified in the same chromosome.ConclusionsReceptors of the secretin-like family GPCRs are present in protostomes but no sequence homologues of the vertebrate cognate ligands have been identified. It has not been possible to determine when the ligands evolved but it seems likely that it was after the protostome-deuterostome divergence from an exon that was part of an existing gene or gene fragment by rounds of gene/genome duplication. The duplicate exon under different evolutionary pressures originated the chordate PACAP-like and GCG-like subfamily groups. This event occurred after the emergence of the metazoan secretin GPCRs and led to the establishment of novel peptide-receptor interactions that contributed to the generation of novel physiological functions in the chordate lineage.


The Journal of Experimental Biology | 2004

Isolation of a novel aquaglyceroporin from a marine teleost (Sparus auratus): function and tissue distribution.

C.R.A. Santos; M.D. Estêvão; Juan Fuentes; João C.R. Cardoso; Mercedes Fabra; Ana Lúcia Passos; F. J. Detmers; Peter M. T. Deen; Joan Cerdà; Deborah M. Power

SUMMARY The aquaporins (formerly called the major intrinsic protein family) are transmembrane channel proteins. The family includes the CHIP group, which are functionally characterised as water channels and the GLP group, which are specialised for glycerol transport. The present study reports the identification and characterisation of a novel GLP family member in a teleost fish, the sea bream Sparus auratus. A sea bream aquaporin (sbAQP) cDNA of 1047 bp and encoding a protein of 298 amino acids was isolated from a kidney cDNA library. Functional characterization of the sbAQP using a Xenopus oocyte assay revealed that the isolated cDNA stimulated osmotic water permeability in a mercury-sensitive manner and also stimulated urea and glycerol uptake. Northern blotting demonstrated that sbAQP was expressed at high levels in the posterior region of the gut, where two transcripts were identified (1.6 kb and 2 kb), and in kidney, where a single transcript was present (2 kb). In situ hybridisation studies with a sbAQP riboprobe revealed its presence in the lamina propria and smooth muscle layer of the posterior region of the gut and in epithelial cells of some kidney tubules. sbAQP was also present in putative chloride cells of the gill. Phylogenetic analysis of sbAQP, including putative GLP genes from Fugu rubripes, revealed that it did not group with any of the previously isolated vertebrate GLPs and instead formed a separate group, suggesting that it may be a novel GLP member.


BMC Evolutionary Biology | 2012

Functional characterization and evolution of PTH/PTHrP receptors: insights from the chicken

Pedro Lc Pinheiro; João C.R. Cardoso; Deborah M. Power; Adelino V. M. Canario

BackgroundThe parathyroid hormone (PTH)-family consists of a group of structurally related factors that regulate calcium and bone homeostasis and are also involved in development of organs such as the heart, mammary gland and immune system. They interact with specific members of family 2 B1 G-protein coupled receptors (GPCRs), which have been characterised in teleosts and mammals. Two PTH/PTHrP receptors, PTH1R and PTH2R exist in mammals and in teleost fish a further receptor PTH3R has also been identified. Recently in chicken, PTH-family members involved in calcium transport were characterized and specific PTHRs are suggested to exist although they have not yet been isolated or functionally characterized. The aim of this study is to further explore the evolution and function of the vertebrate PTH/PTHrP system through the isolation, phylogenetic analysis and functional characterization of the chicken receptors.ResultsTwo PTHRs were isolated in chicken and sequence comparison and phylogenetic analysis indicate that the chicken receptors correspond to PTH1R and PTH3R, which emerged prior to the teleost/tetrapod divergence since they are present in cartilaginous fish. The vertebrate PTH2R receptor and its ligand TIP39 have been lost from bird genomes. Chicken PTH1R and PTH3R have a divergent and widespread tissue expression and are also evident in very early embryonic stages of development. Receptor stimulation studies using HEK293 cells stably expressing the chicken PTH1R and PTH3R and monitoring cAMP production revealed they are activated by chicken 1–34 N-terminal PTH-family peptides in a dose dependent manner. PTH-L and PTHrP were the most effective peptides in activating PTH1R (EC50 = 7.7 nM and EC50 = 22.7 nM, respectively). In contrast, PTH-L (100 nM) produced a small cAMP accumulation on activation of PTH3R but PTHrP and PTH (EC50 = 2.5 nM and EC50 = 22.1 nM, respectively) readily activated the receptor. PTHrP also stimulated intracellular Ca2+ accumulation on activation of PTH1R but not PTH3R.ConclusionTwo PTHR homologues of the vertebrate PTH1R and PTH3R were isolated and functionally characterized in chicken. Their distinct pattern of expression during embryo development and in adult tissues, together with their ligand preference, suggests that they have acquired specific functions, which have contributed to their maintenance in the genome. PTH2R and its activating ligand, TIP39, are absent from bird genomes. Nonetheless identification of putative PTH2R and TIP39 in the genome of an ancient agnathan, lamprey, suggests the PTH/PTHrP ligand and receptor family was already present in an early basal paraphyletic group of vertebrates and during the vertebrate radiation diverged via gene/genome duplication and deletion events. Knowledge of the role PTH/PTHrP system in early vertebrates will help to establish evolution of function.


Peptides | 2007

PACAP, VIP and their receptors in the metazoa: Insights about the origin and evolution of the ligand–receptor pair

João C.R. Cardoso; Florbela A. Vieira; Ana Gomes; Deborah M. Power

The evolution, function and interaction of ligand-receptor pairs are of major pharmaceutical interest. Comparative sequence analysis approaches using data from phylogenetically distant organisms can provide insights into their origin and possible physiological roles. The present review focuses on the pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal polypeptide (VIP) and their receptors in the metazoa. A PACAP-like peptide is present in tunicates and chordates while VIP- and PACAP/VIP-specific receptors have only been isolated in the latter phyla. The apparently disparate evolution of the ligands and their specific receptors raises questions about their evolution during the metazoan radiation and also about how the ligands may have acquired new functions.


BMC Evolutionary Biology | 2010

Gene structure, transcripts and calciotropic effects of the PTH family of peptides in Xenopus and chicken

Pedro Lc Pinheiro; João C.R. Cardoso; Ana Gomes; Juan Fuentes; Deborah M. Power; Adelino V. M. Canario

BackgroundParathyroid hormone (PTH) and PTH-related peptide (PTHrP) belong to a family of endocrine factors that share a highly conserved N-terminal region (amino acids 1-34) and play key roles in calcium homeostasis, bone formation and skeletal development. Recently, PTH-like peptide (PTH-L) was identified in teleost fish raising questions about the evolution of these proteins. Although PTH and PTHrP have been intensively studied in mammals their function in other vertebrates is poorly documented. Amphibians and birds occupy unique phylogenetic positions, the former at the transition of aquatic to terrestrial life and the latter at the transition to homeothermy. Moreover, both organisms have characteristics indicative of a complex system in calcium regulation. This study investigated PTH family evolution in vertebrates with special emphasis on Xenopus and chicken.ResultsThe PTH-L gene is present throughout the vertebrates with the exception of placental mammals. Gene structure of PTH and PTH-L seems to be conserved in vertebrates while PTHrP gene structure is divergent and has acquired new exons and alternative promoters. Splice variants of PTHrP and PTH-L are common in Xenopus and chicken and transcripts of the former have a widespread tissue distribution, although PTH-L is more restricted. PTH is widely expressed in fish tissue but from Xenopus to mammals becomes largely restricted to the parathyroid gland. The N-terminal (1-34) region of PTH, PTHrP and PTH-L in Xenopus and chicken share high sequence conservation and the capacity to modify calcium fluxes across epithelia suggesting a conserved role in calcium metabolism possibly via similar receptors.ConclusionsThe parathyroid hormone family contains 3 principal members, PTH, PTHrP and the recently identified PTH-L. In teleosts there are 5 genes which encode PTHrP (2), PTH (2) and PTH-L and in tetrapods there are 3 genes (PTHrP, PTH and PTH-L), the exception is placental mammals which have 2 genes and lack PTH-L. It is hypothesized that genes of the PTH family appeared at approximately the same time during the vertebrate radiation and evolved via gene duplication/deletion events. PTH-L was lost from the genome of eutherian mammals and PTH, which has a paracrine distribution in lower vertebrates, became the product of a specific endocrine tissue in Amphibia, the parathyroid gland. The PTHrP gene organisation diverged and became more complex in vertebrates and retained its widespread tissue distribution which is congruent with its paracrine nature.


FEBS Journal | 2012

Conserved domains and evolution of secreted phospholipases A2

Timo J. Nevalainen; João C.R. Cardoso; Pentti T. Riikonen

Secreted phospholipases A2 (sPLA2s) are lipolytic enzymes present in organisms ranging from prokaryotes to eukaryotes but their origin and emergence are poorly understood. We identified and compared the conserved domains of 333 sPLA2s and proposed a model for their evolution. The conserved domains were grouped into seven categories according to the in silico annotated conserved domain collections of ‘cd00618: PLA2_like’ and ‘pfam00068: Phospholip_A2_1’. PLA2s containing the conserved domain cd04706 (plant‐specific PLA2) are present in bacteria and plants. Metazoan PLA2s of the group (G) I/II/V/X PLA2 collection exclusively contain the conserved domain cd00125. GIII PLA2s of both vertebrates and invertebrates contain the conserved domain cd04704 (bee venom‐like PLA2), and mammalian GIII PLA2s also contain the conserved domain cd04705 (similar to human GIII PLA2). The sPLA2s of bacteria, fungi and marine invertebrates contain the conserved domain pfam09056 (prokaryotic PLA2) that is the only conserved domain identified in fungal sPLA2s. Pfam06951 (GXII PLA2) is present in bacteria and is widely distributed in eukaryotes. All conserved domains were present across mammalian sPLA2s, with the exception of cd04706 and pfam09056. Notably, no sPLA2s were found in Archaea. Phylogenetic analysis of sPLA2 conserved domains reveals that two main clades, the cd‐ and the pfam‐collection, exist, and that they have evolved via gene‐duplication and gene‐deletion events. These observations are consistent with the hypothesis that sPLA2s in eukaryotes shared common origins with two types of bacterial sPLA2s, and their persistence during evolution may be related to their role in phospholipid metabolism, which is fundamental for survival.


General and Comparative Endocrinology | 2014

New insights into the evolution of vertebrate CRH (corticotropin-releasing hormone) and invertebrate DH44 (diuretic hormone 44) receptors in metazoans.

João C.R. Cardoso; Rute C. Félix; Christina Bergqvist; Dan Larhammar

The corticotropin releasing hormone receptors (CRHR) and the arthropod diuretic hormone 44 receptors (DH44R) are structurally and functionally related members of the G protein-coupled receptors (GPCR) of the secretin-like receptor superfamily. We show here that they derive from a bilaterian predecessor. In protostomes, the receptor became DH44R that has been identified and functionally characterised in several arthropods but the gene seems to be absent from nematode genomes. Duplicate DH44R genes (DH44 R1 and DH44R2) have been described in some arthropods resulting from lineage-specific duplications. Recently, CRHR-DH44R-like receptors have been identified in the genomes of some lophotrochozoans (molluscs, which have a lineage-specific gene duplication, and annelids) as well as representatives of early diverging deuterostomes. Vertebrates have previously been reported to have two CRHR receptors that were named CRHR1 and CRHR2. To resolve their origin we have analysed recently assembled genomes from representatives of early vertebrate divergencies including elephant shark, spotted gar and coelacanth. We show here by analysis of synteny conservation that the two CRHR genes arose from a common ancestral gene in the early vertebrate tetraploidizations (2R) approximately 500 million years ago. Subsequently, the teleost-specific tetraploidization (3R) resulted in a duplicate of CRHR1 that has been lost in some teleost lineages. These results help distinguish orthology and paralogy relationships and will allow studies of functional conservation and changes during evolution of the individual members of the receptor family and their multiple native peptide agonists.


General and Comparative Endocrinology | 2011

Divergence of duplicate POMC genes in gilthead sea bream Sparus auratus

João C.R. Cardoso; R Laiz-Carrion; Bruno Louro; Nadia Silva; Adelino V. M. Canario; Juan Miguel Mancera; Deborah M. Power

Proopiomelanocorticotrophin (POMC) in vertebrates is produced in the pituitary gland and undergoes post-translational processing to give rise to a range of biologically active peptides. Teleosts possess 2-3 different POMC transcripts which have been proposed to have originated from a whole or partial genome duplication. In the present study 2 transcripts of gilthead sea bream POMC (sbPOMC-α1 and α2) were cloned and characterised. sbPOMC-α1 is expressed principally in the melanotroph cells of the pars intermedia (PI) and sbPOMC-α2 is expressed in the corticotroph cells of the rostral pars distalis and probably also in the PI. The 2 sbPOMC transcripts have a differential tissue distribution in extra-pituitary sites. An appraisal of POMC evolution indicates sbPOMCs belong to one of the two main clades that exist in teleosts and that overall a non conservative process of gene loss occurred in this infraclass.

Collaboration


Dive into the João C.R. Cardoso's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Melody S. Clark

Natural Environment Research Council

View shared research outputs
Top Co-Authors

Avatar

Rute C. Félix

University of the Algarve

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liliana Anjos

University of the Algarve

View shared research outputs
Top Co-Authors

Avatar

Greg Elgar

Francis Crick Institute

View shared research outputs
Top Co-Authors

Avatar

Ana Gomes

University of the Algarve

View shared research outputs
Top Co-Authors

Avatar

Bruno Louro

University of the Algarve

View shared research outputs
Top Co-Authors

Avatar

Isabel Morgado

University of the Algarve

View shared research outputs
Researchain Logo
Decentralizing Knowledge