João Laranjinha
University of Coimbra
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by João Laranjinha.
Biochemical Pharmacology | 1994
João Laranjinha; Leonor M. Almeida; Vítor M.C. Madeira
The interaction of four phenolic acids, representative of three chemical groups present in human diet, with peroxyl radicals was studied in vitro in a low density lipoprotein (LDL) oxidation model. The controlled oxidation of LDL was initiated by free radicals generated from a hydrophilic azo initiator and followed by monitoring the oxygen consumption and the fluorescence quenching of cis-parinaric acid previously incorporated into LDL. The hydroxycinnamic acid derivatives, chlorogenic and caffeic acids, have high stoichiometric numbers and reactivity with peroxyl radicals as compared with trolox, the water-soluble analogue of vitamin E, whereas ellagic acid (a tannic compound) compares with trolox effects. Protocatechuic acid (a hydroxybenzoic acid derivative) exhibits a complex reaction with peroxyl radicals, as indicated by UV spectroscopy, resulting in undefined inhibition periods of LDL oxidation and low reactivity with peroxyl radicals. Presumably, secondary radicals of these compounds are unable to initiate LDL oxidation. The antioxidant activity of the various phenolic compounds is discussed in terms of structure-activity relationships.
Journal of Nutritional Biochemistry | 2000
Mauro Serafini; João Laranjinha; Leonor M. Almeida; Giuseppe Maiani
Mounting evidence shows that phenol-rich beverages exert strong antioxidant activity. However, in vivo evidence has produced conflicting results. In the present study, we studied the impact of the ingestion of 300 mL of black and green tea, alcohol-free red wine, alcohol-free white wine, or water on plasma total antioxidant capacity in five healthy volunteers. Red wine has the highest content of phenolics (3.63 +/- 0.48 g QE/L), followed by green tea (2.82 +/- 0.07 g QE/L), black tea (1.37 +/- 0.15 g QE/L), and white wine (0.31 +/- 0.01 g QE/L). Plasma total antioxidant capacity values of subjects who drank green tea rose at 30 min (P < 0.05). After black tea and red wine ingestion, the peaks were at 50 min (P < 0.05 and P < 0.01, respectively). No changes were observed in the control and white wine groups. Red wine and green tea were the most efficient in protecting low density lipoprotein from oxidation driven by peroxyl and ferril radicals, respectively. Phenol-rich beverages are a natural source of antioxidants; however, the phenolic content alone cannot be considered an index of their in vivo antioxidant activity.
Journal of Cell Science | 2007
B. G. Almeida; Sabrina Büttner; Steffen Ohlmeier; Alexandra Silva; Ana Mesquita; Belém Sampaio-Marques; Nuno S. Osório; Alexander Kollau; Bernhard Mayer; Cecília Leão; João Laranjinha; Fernando Rodrigues; Frank Madeo; Paula Ludovico
Nitric oxide (NO) is a small molecule with distinct roles in diverse physiological functions in biological systems, among them the control of the apoptotic signalling cascade. By combining proteomic, genetic and biochemical approaches we demonstrate that NO and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) are crucial mediators of yeast apoptosis. Using indirect methodologies and a NO-selective electrode, we present results showing that H2O2-induced apoptotic cells synthesize NO that is associated to a nitric oxide synthase (NOS)-like activity as demonstrated by the use of a classical NOS kit assay. Additionally, our results show that yeast GAPDH is a target of extensive proteolysis upon H2O2-induced apoptosis and undergoes S-nitrosation. Blockage of NO synthesis with Nω-nitro-L-arginine methyl ester leads to a decrease of GAPDH S-nitrosation and of intracellular reactive oxygen species (ROS) accumulation, increasing survival. These results indicate that NO signalling and GAPDH S-nitrosation are linked with H2O2-induced apoptotic cell death. Evidence is presented showing that NO and GAPDH S-nitrosation also mediate cell death during chronological life span pointing to a physiological role of NO in yeast apoptosis.
British Journal of Pharmacology | 1998
Otilia V. Vieira; Isabelle Escargueil-Blanc; Olivier Meilhac; Jean-Pierre Basile; João Laranjinha; Leonor M. Almeida; Robert Salvayre; Anne Nègre-Salvayre
Oxidized low density lipoproteins (LDL) are toxic to cultured endothelial cells. Mildly oxidized LDL, characterized by relatively low levels of TBARS and only minor modifications of apoB, were obtained by using 2 experimental model systems of oxidation, namely oxidation by u.v. radiation or ferrylmyoglobin (a two electron oxidation product from the reaction of metmyoglobin with H2O2). Toxic concentrations of mildly oxidized LDL induce apoptosis (programmed cell death) of cultured endothelial cells, as shown by typical morphological features, by the in situ TUNEL procedure and by DNA fragmentation revealed on gel electrophoresis. This apoptosis is calcium‐dependent and subsequent to the intense and sustained cytosolic [Ca2+]i peak elicited by oxidized LDL. Five naturally occurring phenolic compounds present in food and beverages were able to prevent, in a concentration‐dependent manner, the apoptosis of endothelial cells induced by oxidized LDL. Among the compounds tested, caffeic acid was the most effective. Under the conditions used, the protective effect of caffeic acid (IC50 8.3±2.1 μmol l−1) in the prevention of apoptosis induced by oxidized LDL was significantly higher than that of the other compounds tested (IC50s were 12.4±3.2, 14.1±4.1, 20.4±4.4 and 72.6±9.2 μmol l−1 for ferulic, protocatechuic, ellagic and p‐coumaric acids, respectively). The anti‐apoptotic effect of caffeic acid results from the addition of two effects, (i) the antioxidant effect which prevents LDL oxidation and subsequent toxicity (‘indirect’ protective effect); (ii) a ‘direct’ cytoprotective effect, acting at the cellular level. Effective concentrations of caffeic acid acted at the cellular level by blocking the intense and sustained cytosolic [Ca2+]i rise elicited by oxidized LDL. In conclusion, phenolic acids (caffeic and ferulic acids being the most potent of the compounds tested under the conditions used) exhibit a potent cytoprotective effect of cultured endothelial cells against oxidized LDL. In addition to antioxidant effect delaying LDL oxidation, caffeic acid acts as a cytoprotective agent, probably by blocking the intracellular signalling triggered by oxidized LDL and culminating in the sustained calcium rise which is involved in oxidized LDL‐induced apoptosis.
Toxicology | 2009
Bárbara S. Rocha; Bruno Gago; Rui M. Barbosa; João Laranjinha
Nitrite, considered a biological waste and toxic product, is being regarded as an important physiological molecule in nitric oxide (NO) biochemistry. Because the interaction of dietary phenolic compounds and nitrite would be kinetically (due to the high concentrations achieved) and thermodynamically (on basis of the redox potentials) feasible in the stomach, we have studied the potential reduction of nitrite by polyphenols present in several dietary sources. By measuring the time courses of *NO production in simulated gastric juice (pH 2), the efficiency of the compounds studied is as follows: Epicatechin-3-O-gallate>quercetin>procyanidin B8 dimer>oleuropein>procyanidin B2 dimer>chlorogenic acid>epicatechin>catechin>procyanidin B5 dimer. The initial rates of *NO production fall in a narrow range (ca. 1-5 microMs(-1)) but the distinct kinetics of the decay of *NO signals suggest that competition reactions for *NO are operative. The proof of concept that, in the presence of nitrite, phenol-containing dietary products induce a strong increase of *NO in the stomach was established in an in vivo experiment with healthy volunteers consuming lettuce, onions, apples, wine, tea, berries and cherries. Moreover, selected mixtures of oleuropein and catechin with low nitrite (1 microM) were shown to induce muscle relaxation of stomach strips in a structure-dependent way. Data presented here brings strong support to the concept that polyphenols consumed in a variety of dietary products, under gastric conditions, reduce nitrite to *NO that, in turn, may exert a biological impact as a local relaxant.
Iubmb Life | 1999
João Laranjinha; Enrique Cadenas
This study addresses the dynamic interactions among alpha‐tocopherol, caffeic acid, and ascorbate in terms of a sequence of redox cycles aimed at accomplishing optimal synergistic antioxidant protection. Several experimental models were designed to examine these interactions: UV irradiation of alpha‐tocopherol‐containing sodium dodecyl sulfate micelles, one‐electron oxidations catalyzed by the hypervalent state of myoglobin, ferrylmyoglobin, and autoxidation at appropriate pHs. These models were assessed by ultraviolet (UV) and electron paramagnetic resonance (EPR), entailing direct‐ and continuous‐flow experiments, spectroscopy and by separation and identification of products by HPLC. The alpha‐tocopheroxyl radical EPR signal generated by UV irradiation of alpha‐tocopherol containing micelles was suppressed by caffeic acid and ascorbate; in the former case, no other EPR signal was ob served at pH 7.4, whereas in the latter case, the alpha‐tocopheroxyl radical EPR signal was replaced by a doublet EPR spectrum corresponding to the ascorbyl radical (A). The potential interactions between caffeic acid and ascorbate were further analyzed by assessing, on the one hand, the ability of ascorbate to reduce the caffeic acid o‐semiquinone (generated by oxidation of caffeic acid by ferrylmyoglobin) and, on the other hand, the ability of caffeic acid to reduce ascorbyl radical (generated by autoxidation or oxidation of ascorbate by ferrylmyoglobin). The data presented indicate that the reductive decay of ascorbyl radical (A) and caffeic acid o‐semiquinone (Caf‐O) can be accomplished by caffeic acid (Caf‐OH) and ascorbate (AH), respectively, thus pointing to the reversibility of the reaction Caf‐O + AH Caf‐OH + A‐. Continuous‐flow EPR measurements of mixtures containing ferrylmyoglobin, alpha‐tocopherol‐containing micelles, caffeic acid, and ascorbate revealed that ascorbate is the ultimate electron donor in the sequence encompassing transfer of the radical character from the micellar phase to the phase. In independent experiments, the effects of caffeic acid and ascorbate on the oxidation of two low density lipoprotein (LDL) populations, control and alpha‐tocopherol enriched, were studied and results indicated that alpha‐tocopherol, caffeic acid, and ascorbate acted synergistically to afford optimal protection of LDL against oxidation. These results are analyzed for each individual antioxidant in terms of three domains: its localization and that of the antioxidant‐derived radical, its reduction potential, and the predominant decay pathways for the antioxidant‐derived radical, that exert kinetic control on the process.
Methods in Enzymology | 2008
Rui M. Barbosa; Cátia F. Lourenço; Ricardo M. Santos; Francois Pomerleau; Peter Huettl; Greg A. Gerhardt; João Laranjinha
During the last two decades nitric oxide (.NO) gas has emerged as a novel and ubiquitous intercellular modulator of cell functions. In the brain, .NO is implicated in mechanisms of synaptic plasticity but it is also involved in cell death pathways underlying several neurological diseases. Because of its hydrophobicity, small size, and rapid diffusion properties, the rate and pattern of .NO concentration changes are critical determinants for the understanding of its diverse actions in the brain. .NO measurement in vivo has been a challenging task due to its low concentration, short half-life, and high reactivity with other biological molecules, such as superoxide radical, thiols, and heme proteins. Electrochemical methods are versatile approaches for detecting and monitoring various neurotransmitters. When associated with microelectrodes inserted into the brain they provide high temporal and spatial resolution, allowing measurements of neurochemicals in physiological environments in a real-time fashion. To date, electrochemical detection of .NO is the only available technique that provides a high sensitivity, low detection limit, selectivity, and fast response to measure the concentration dynamics of .NO in vivo. We have used carbon fiber microelectrodes coated with two layers of Nafion and o-phenylenediamine to monitor the rate and pattern of .NO change in the rat brain in vivo. The analytical performance of microelectrodes was assessed in terms of sensitivity, detection limit, and selectivity ratios against major interferents: ascorbate, dopamine, noradrenaline, serotonin, and nitrite. For the in vivo recording experiments, we used a microelectrode/micropipette array inserted into the brain using a stereotaxic frame. The characterization of in vivo signals was assessed by electrochemical and pharmacological verification. Results support our experimental conditions that the measured oxidation current reflects variations in the .NO concentration in brain extracellular space. We report results from recordings in hippocampus and striatum upon stimulation of N-methyl-d-aspartate-subtype glutamate receptors. Moreover, the kinetics of .NO disappearance in vivo following pressure ejection of a .NO solution is also addressed.
Atherosclerosis | 2008
Marcelo Farina; Rafael de Lima Portella; Cristina W. Nogueira; Teresa C.P. Dinis; João Laranjinha; Leonor M. Almeida; João Batista Teixeira da Rocha
Oxidative modification of low-density lipoprotein (LDL) represents an important factor in atherogenesis. In the present study, we have investigated the antioxidant capability of diphenyl diselenide (PhSe)(2), a simple organoseleno compound, against copper (Cu2+) and peroxyl radical-induced human LDL oxidation in vitro. In initial studies using human serum, (PhSe)(2) caused a dose-dependent inhibition of Cu(2+)-induced lipid peroxidation, which was correlated to thiol consumption. (PhSe)(2) increased lipid peroxidation lag phase and decreased lipid peroxidation rate in isolated human LDL, evaluated by measuring both conjugated diene (CD) and thiobarbituric acid reactive substances (TBARS) levels. Consistent with these observations, (PhSe)(2) showed a marked inhibitory effect on 2,2-azobis(2-amidinopropane dihydrochloride) (AAPH)-induced oxidation of LDL or parinaric acid (PnA) incorporated into LDL. (PhSe)(2) also displayed a dose-dependent protective effect against Cu(2+)-induced lipid peroxidation in rat aortic slices. Interestingly, besides the antioxidant effects of (PhSe)(2) toward the lipid moieties of LDL, which was related to its thiol-peroxidase activity, protein moieties from human isolated LDL were also protected against Cu(2+)-induced oxidation. The results presented herein are the first to show that (i) (PhSe)(2) inhibits lipid peroxidation in human isolated LDL in vitro, (ii) this phenomenon is related to its thiol-peroxidase activity, and (iii) this chalcogen also prevents the oxidation of protein moieties of human LDL. Taken together, such data render (PhSe)(2) a promising molecule for pharmacological studies with respect to the atherogenic process.
Journal of Lipid Research | 2006
Jan Frank; Alicja Budek; Torbjörn Lundh; Robert S. Parker; Joy E. Swanson; Cátia F. Lourenço; Bruno Gago; João Laranjinha; Bengt Vessby; Afaf Kamal-Eldin
To identify dietary phenolic compounds capable of improving vitamin E status, male Sprague-Dawley rats were fed for 4 weeks either a basal diet (control) with 2 g/kg cholesterol and an adequate content of vitamin E or the basal diet fortified with quercetin (Q), (−)-epicatechin (EC), or (+)-catechin (C) at concentrations of 2 g/kg. All three catechol derivatives substantially increased concentrations of α-tocopherol (α-T) in blood plasma and liver. To study potential mechanisms underlying the observed increase of α-T, the capacities of the flavonoids to i) protect α-T from oxidation in LDL exposed to peroxyl radicals, ii) reduce α-tocopheroxyl radicals (α-T · ) in SDS micelles, and iii) inhibit the metabolism of tocopherols in HepG2 cells were determined. All flavonoids protected α-T from oxidation in human LDL ex vivo and dose-dependently reduced the concentrations of α-T · . None of the test compounds affected vitamin E metabolism in the hepatocyte cultures. In conclusion, fortification of the diet of Sprague-Dawley rats with Q, EC, or C considerably improved their vitamin E status. The underlying mechanism does not appear to involve vitamin E metabolism but may involve direct quenching of free radicals or reduction of the α-T · by the flavonoids.
Biosensors and Bioelectronics | 2013
Ricardo M. Santos; Marcelo S. Rodrigues; João Laranjinha; Rui M. Barbosa
A novel biomimetic microsensor for measuring nitric oxide (NO) in the brain in vivo was developed. The sensor consists of hemin and functionalized multi-wall carbon nanotubes covalently attached to chitosan via the carbodiimide crosslinker EDC followed by chitosan electrodeposition on the surface of carbon fiber microelectrodes. Cyclic voltammetry supported direct electron transfer from the Fe(III)/Fe(II) couple of hemin to the carbon surface at -0.370 V and -0.305 V vs. Ag/AgCl for cathodic and anodic peaks, respectively. Square wave voltammetry revealed a NO reduction peak at -0.762 V vs. Ag/AgCl that increased linearly with NO concentration between 0.25 and 1 μM. The average sensitivity of the microsensors was 1.72 nA/μM and the limit of detection was 25 nM. Oxygen and hydrogen peroxide reduction peaks were observed at -0.269 V and -0.332 V vs. Ag/AgCl, respectively and no response was observed for other relevant interferents, namely ascorbate, nitrite and dopamine. The microsensor was successfully applied to the measurement of exogenously applied NO in the rat brain in vivo.