Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where João M. Dias is active.

Publication


Featured researches published by João M. Dias.


Structure | 1999

Crystal structure of the first dissimilatory nitrate reductase at 1.9 Å solved by MAD methods

João M. Dias; Manuel E. Than; Andreas Humm; Robert Huber; Gleb Bourenkov; Hans D. Bartunik; Sergey A. Bursakov; Juan J. Calvete; Jorge Caldeira; Carla Carneiro; José Jg Moura; Isabel Moura; Maria João Romão

BACKGROUND The periplasmic nitrate reductase (NAP) from the sulphate reducing bacterium Desulfovibrio desulfuricans ATCC 27774 is induced by growth on nitrate and catalyses the reduction of nitrate to nitrite for respiration. NAP is a molybdenum-containing enzyme with one bis-molybdopterin guanine dinucleotide (MGD) cofactor and one [4Fe-4S] cluster in a single polypeptide chain of 723 amino acid residues. To date, there is no crystal structure of a nitrate reductase. RESULTS The first crystal structure of a dissimilatory (respiratory) nitrate reductase was determined at 1.9 A resolution by multiwavelength anomalous diffraction (MAD) methods. The structure is folded into four domains with an alpha/beta-type topology and all four domains are involved in cofactor binding. The [4Fe-4S] centre is located near the periphery of the molecule, whereas the MGD cofactor extends across the interior of the molecule interacting with residues from all four domains. The molybdenum atom is located at the bottom of a 15 A deep crevice, and is positioned 12 A from the [4Fe-4S] cluster. The structure of NAP reveals the details of the catalytic molybdenum site, which is coordinated to two MGD cofactors, Cys140, and a water/hydroxo ligand. A facile electron-transfer pathway through bonds connects the molybdenum and the [4Fe-4S] cluster. CONCLUSIONS The polypeptide fold of NAP and the arrangement of the cofactors is related to that of Escherichia coli formate dehydrogenase (FDH) and distantly resembles dimethylsulphoxide reductase. The close structural homology of NAP and FDH shows how small changes in the vicinity of the molybdenum catalytic site are sufficient for the substrate specificity.


Structure | 2002

Gene Sequence and the 1.8 A Crystal Structure of the Tungsten-Containing Formate Dehydrogenase from Desulfovibrio Gigas

Hans Raaijmakers; Sofia Macieira; João M. Dias; Susana Teixeira; Sergey A. Bursakov; Robert Huber; José J. G. Moura; Isabel Moura; Maria João Romão

Desulfovibrio gigas formate dehydrogenase is the first representative of a tungsten-containing enzyme from a mesophile that has been structurally characterized. It is a heterodimer of 110 and 24 kDa subunits. The large subunit, homologous to E. coli FDH-H and to D. desulfuricans nitrate reductase, harbors the W site and one [4Fe-4S] center. No small subunit ortholog containing three [4Fe-4S] clusters has been reported. The structural homology with E. coli FDH-H shows that the essential residues (SeCys158, His159, and Arg407) at the active site are conserved. The active site is accessible via a positively charged tunnel, while product release may be facilitated, for H(+) by buried waters and protonable amino acids and for CO(2) through a hydrophobic channel.


Journal of Biological Chemistry | 2007

Molecular cloning and characterization of a highly selective chemokine-binding protein from the tick Rhipicephalus sanguineus

Achim Frauenschuh; Christine A. Power; Maud Deruaz; Beatriz Rossetti Ferreira; João M. da Silva; Mauro M. Teixeira; João M. Dias; Thierry Martin; Timothy N. C. Wells; Amanda E. I. Proudfoot

Ticks are blood-feeding parasites that secrete a number of immuno-modulatory factors to evade the host immune response. Saliva isolated from different species of ticks has recently been shown to contain chemokine neutralizing activity. To characterize this activity, we constructed a cDNA library from the salivary glands of the common brown dog tick, Rhipicephalus sanguineus. Pools of cDNA clones from the library were transfected into HEK293 cells, and the conditioned media from the transfected cells were tested for chemokine binding activity by chemical cross-linking to radiolabeled CCL3 followed by SDS-PAGE. By de-convolution of a single positive pool of 270 clones, we identified a full-length cDNA encoding a protein of 114 amino acids, which after signal peptide cleavage was predicted to yield a mature protein of 94 amino acids that we called Evasin-1. Recombinant Evasin-1 was produced in HEK293 cells and in insect cells. Using surface plasmon resonance we were able to show that Evasin-1 was exquisitely selective for 3 CC chemokines, CCL3 and CCL4 and the closely related chemokine CCL18, with KD values of 0.16, 0.81, and 3.21 nm, respectively. The affinities for CCL3 and CCL4 were confirmed in competition receptor binding assays. Analysis by size exclusion chromatography demonstrated that Evasin-1 was monomeric and formed a 1:1 complex with CCL3. Thus, unlike the other chemokine-binding proteins identified to date from viruses and from the parasitic worm Schistosoma mansoni, Evasin-1 is highly specific for a subgroup of CC chemokines, which may reflect a specific role for these chemokines in host defense against parasites.


Biotechnology and Bioengineering | 2009

In situ 2D fluorometry and chemometric monitoring of mammalian cell cultures

Ana P. Teixeira; Carla A.M. Portugal; Nuno Carinhas; João M. Dias; João P. Crespo; Paula M. Alves; Manuel J.T. Carrondo; Rui Oliveira

The main objective of the present study was to investigate the use of in situ 2D fluorometry for monitoring key bioprocess variables in mammalian cell cultures, namely the concentration of viable cells and the concentration of recombinant proteins. All studies were conducted using a recombinant Baby Hamster Kidney (BHK) cell line expressing a fusion glycoprotein IgG1‐IL2 cultured in batch and fed‐batch modes. It was observed that the intensity of fluorescence signals in the excitation/emission wavelength range of amino acids, vitamins and NAD(P)H changed along culture time, although the dynamics of single fluorophors could not be correlated with the dynamics of the target state variables. Therefore, multivariate chemometric modeling was adopted as a calibration methodology. 2D fluorometry produced large volumes of redundant spectral data, which were first filtered by principal components analysis (PCA). Then, a partial least squares (PLS) regression was applied to correlate the reduced fluorescence maps with the target state variables. Two validation strategies were used to evaluate the predictive capacity of the developed PLS models. Accurate estimations of viable cells density (r2 = 0.95; 99.2% of variance captured in the training set; r2 = 0.91; 97.7% of variance captured in the validation set) and of glycoprotein concentration (r2 = 0.99 and 99.7% of variance captured in the training set; r2 = 0.99 and 99.3% of variance captured in the validation set) were obtained over a wide range of reactor operation conditions. The results presented herein confirm that 2D fluorometry constitutes a reliable methodology for on‐line monitoring of viable cells and recombinant protein concentrations in mammalian cell cultures. Biotechnol. Bioeng. 2009;102: 1098–1106.


Journal of Biological Chemistry | 2015

From G Protein-coupled Receptor Structure Resolution to Rational Drug Design

Ali Jazayeri; João M. Dias; Fiona H. Marshall

A number of recent technical solutions have led to significant advances in G protein-coupled receptor (GPCR) structural biology. Apart from a detailed mechanistic view of receptor activation, the new structures have revealed novel ligand binding sites. Together, these insights provide avenues for rational drug design to modulate the activities of these important drug targets. The application of structural data to GPCR drug discovery ushers in an exciting era with the potential to improve existing drugs and discover new ones. In this review, we focus on technical solutions that have accelerated GPCR crystallography as well as some of the salient findings from structures that are relevant to drug discovery. Finally, we outline some of the approaches used in GPCR structure based drug design.


Journal of Biotechnology | 2012

Flux balance analysis of mixed microbial cultures: Application to the production of polyhydroxyalkanoates from complex mixtures of volatile fatty acids

Filipa Pardelha; M.G.E. Albuquerque; Maria A.M. Reis; João M. Dias; Rui Oliveira

Fermented agro-industrial wastes are potential low cost substrates for polyhydroxyalkanoates (PHA) production by mixed microbial cultures (MMC). The use of complex substrates has however profound implications in the PHA metabolism. In this paper we investigate PHA accumulation using a lumped metabolic model that describes PHA storage from arbitrary mixtures of volatile fatty acids (VFA). Experiments were conducted using synthetic and complex VFA mixtures obtained from the fermentation of sugar cane molasses. Metabolic flux analysis (MFA) and flux balance analysis (FBA) were performed at different stages of culture enrichment in order to investigate the effect of VFA composition and time of enrichment in PHA storage efficiency. Substrate uptake and PHA storage fluxes increased over enrichment time by 70% and 73%, respectively. MFA calculations show that higher PHA storage fluxes are associated to an increase in the uptake of VFA with even number of carbon atoms and a more effective synthesis of hydroxyvalerate (HV) precursors from VFA with odd number of carbons. Furthermore, FBA shows that the key metabolic objective of a MMC subjected to the feast and famine regimen is the minimization of the tricarboxylic acid cycle fluxes. The PHA flux and biopolymer composition (hydroxybutyrate (HB): HV) could be accurately predicted in several independent experiments.


Microbial Cell Factories | 2013

Towards better understanding of an industrial cell factory: investigating the feasibility of real-time metabolic flux analysis in Pichia pastoris

Mariana L. Fazenda; João M. Dias; Linda M. Harvey; Alison Nordon; Ruan Edrada-Ebel; David Littlejohn; Brian McNeil

BackgroundNovel analytical tools, which shorten the long and costly development cycles of biopharmaceuticals are essential. Metabolic flux analysis (MFA) shows great promise in improving our understanding of the metabolism of cell factories in bioreactors, but currently only provides information post-process using conventional off-line methods. MFA combined with real time multianalyte process monitoring techniques provides a valuable platform technology allowing real time insights into metabolic responses of cell factories in bioreactors. This could have a major impact in the bioprocessing industry, ultimately improving product consistency, productivity and shortening development cycles.ResultsThis is the first investigation using Near Infrared Spectroscopy (NIRS) in situ combined with metabolic flux modelling which is both a significant challenge and considerable extension of these techniques. We investigated the feasibility of our approach using the industrial workhorse Pichia pastoris in a simplified model system. A parental P. pastoris strain (i.e. which does not synthesize recombinant protein) was used to allow definition of distinct metabolic states focusing solely upon the prediction of intracellular fluxes in central carbon metabolism. Extracellular fluxes were determined using off-line conventional reference methods and on-line NIR predictions (calculated by multivariate analysis using the partial least squares algorithm, PLS). The results showed that the PLS-NIRS models for biomass and glycerol were accurate: correlation coefficients, R2, above 0.90 and the root mean square error of prediction, RMSEP, of 1.17 and 2.90 g/L, respectively. The analytical quality of the NIR models was demonstrated by direct comparison with the standard error of the laboratory (SEL), which showed that performance of the NIR models was suitable for quantifying biomass and glycerol for calculating extracellular metabolite rates and used as independent inputs for the MFA (RMSEP lower than 1.5 × SEL). Furthermore, the results for the MFA from both datasets passed consistency tests performed for each steady state, showing that the precision of on-line NIRS is equivalent to that obtained by the off-line measurements.ConclusionsThe findings of this study show for the first time the potential of NIRS as an input generating for MFA models, contributing to the optimization of cell factory metabolism in real-time.


Journal of Biotechnology | 2012

Optimization of fermentation conditions for the production of human soluble catechol-O-methyltransferase by Escherichia coli using artificial neural network

R. Silva; Susana Ferreira; Maria João Bonifácio; João M. Dias; João A. Queiroz; L. A. Passarinha

The aim of this work was to optimize the temperature, pH and stirring rate of the production of human soluble catechol-O-methyltransferase (hSCOMT) in a batch Escherichia coli culture process. A central composite design (CCD) was firstly employed to design the experimental assays used in the evaluation of these operational parameters on the hSCOMT activity for a semi-defined and complex medium. Predictive artificial neural network (ANN) models of the hSCOMT activity as function of the combined effects of these variables was proposed based on this exploratory experiments performed for the two culture media. The regression coefficients (R(2)) for the final models were 0.980 and 0.983 for the semi-defined and complex medium, respectively. The ANN models predicted a maximum hSCOMT activity of 183.73 nmol/h, at 40 °C, pH 6.5 and stirring rate of 351 rpm, and 132.90 nmol/h, at 35 °C, pH 6.2 and stirring rate of 351 rpm, for semi-defined and complex medium, respectively. These results represent a 4-fold increase in total hSCOMT activity by comparison to the standard operational conditions used for this bioprocess at slight scale.


New Biotechnology | 2014

Dynamic metabolic modelling of volatile fatty acids conversion to polyhydroxyalkanoates by a mixed microbial culture

Filipa Pardelha; M.G.E. Albuquerque; Maria A.M. Reis; Rui Oliveira; João M. Dias

In this work, we present a dynamic metabolic model that describes the uptake of complex mixtures of volatile fatty acids (VFA) and respective conversion into PHA by mixed microbial cultures (MMC). This model builds upon a previously published flux balance analysis model [1] that identified the minimization of TCA cycle activity as the key metabolic objective to predict PHA storage fluxes and respective composition. The model was calibrated either with experimental data of PHA production from fermented sugar cane molasses or from synthetic mixtures of VFA. All PHA production experiments were performed using a MMC selected with fermented sugar cane molasses under feast and famine regimen. The model was able to capture the process dynamics denoted by an excellent fit between experimental and computed time profiles of concentrations with the regression coefficients always above 0.92. The introduced VFA uptake regulatory factor reflects the decrease of acetyl-CoA and propionyl-CoA available to TCA cycle in conformity with the hypothesis that the minimization of TCA cycle is a key metabolic objective for MMC subjected to feast and famine regimen for the maximization of PHA production.


Acta Crystallographica Section D-biological Crystallography | 2000

Crystallization and preliminary X-ray analysis of a membrane-bound nitrite reductase from Desulfovibrio desulfuricans ATCC 27774

João M. Dias; Carlos Cunha; Susana Teixeira; Gabriela Almeida; Cristina Costa; Jorge Lampreia; José J. G. Moura; Isabel Moura; Maria João Romão

Nitrite reductase from the sulfate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774 is a multihaem (type c) membrane-bound enzyme that catalyzes the dissimilatory conversion of nitrite to ammonia. Crystals of the oxidized form of this enzyme were obtained using PEG and CaCl(2) as precipitants in the presence of 3--(decylmethylammonium)propane-1-sulfonate and belong to the space group P2(1)2(1)2(1), with unit-cell parameters a = 78.94, b = 104.59, c = 143.18 A. A complete data set to 2.30 A resolution was collected using synchrotron radiation at the ESRF. However, the crystals may diffract to beyond 1.7 A and high-resolution data will be collected in the near future.

Collaboration


Dive into the João M. Dias's collaboration.

Top Co-Authors

Avatar

Rui Oliveira

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Maria João Romão

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Isabel Moura

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

José J. G. Moura

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Maria A.M. Reis

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Filipa Pardelha

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M.G.E. Albuquerque

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Sergey A. Bursakov

Universidade Nova de Lisboa

View shared research outputs
Researchain Logo
Decentralizing Knowledge