Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where João P. André is active.

Publication


Featured researches published by João P. André.


Contrast Media & Molecular Imaging | 2008

68Ga-PET: a powerful generator-based alternative to cyclotron-based PET radiopharmaceuticals.

Melpomeni Fani; João P. André; Helmut R. Maecke

PET (positron emission tomography) is a powerful diagnostic and imaging technique which requires short-lived positron emitting isotopes. The most commonly used are accelerator-produced (11)C and (18)F. An alternative is the use of metallic positron emitters. Among them (68)Ga deserves special attention because of its availability from long-lived (68)Ge/(68)Ga generator systems which render (68)Ga radiopharmacy independent of an onsite cyclotron. The coordination chemistry of Ga(3+) is dominated by its hard acid character. A variety of mono- and bifunctional chelators have been developed which allow the formation of stable (68)Ga(3+)complexes and convenient coupling to biomolecules. (68)Ga coupling to small biomolecules is potentially an alternative to (18)F- and (11)C-based radiopharmacy. In particular, peptides targeting G-protein coupled receptors overexpressed on human tumour cells have shown preclinically and clinically high and specific tumour uptake. Kit-formulated precursors along with the generator may be provided, similar to the (99)Mo/(99m)Tc-based radiopharmacy, still the mainstay of nuclear medicine.


Chemistry: A European Journal | 1999

High Relaxivity for Monomeric Gd(DOTA)-Based MRI Contrast Agents, Thanks to Micellar Self-Organization

João P. André; Éva Tóth; Holger Fischer; Anna Seelig; Helmut R. Mäcke; Andre E. Merbach

A new amphiphilic GdIIIchelate, which is capable of forming micelles in aqueous solution (see diagram), has been synthesized. Due to this self-aggregation, the compound has a long rotational correlation time and, consequently, has high proton relaxivities that thus far have only been obtained with macromolecular complexes.


Chemistry: A European Journal | 2006

Supramolecular Assembly of an Amphiphilic GdIII Chelate: Tuning the Reorientational Correlation Time and the Water Exchange Rate

Susana Torres; José A. Martins; João P. André; Carlos F. G. C. Geraldes; Andre E. Merbach; Éva Tóth

We report the synthesis and characterization of the novel ligand H(5)EPTPA-C(16) ((hydroxymethylhexadecanoyl ester)ethylenepropylenetriaminepentaacetic acid). This ligand was designed to chelate the Gd(III) ion in a kinetically and thermodynamically stable way while ensuring an increased water exchange rate (kappa(ex)) on the Gd(III) complex owing to steric compression around the water-binding site. The attachment of a palmitic ester unit to the pendant hydroxymethyl group on the ethylenediamine bridge yields an amphiphilic conjugate that forms micelles with a long tumbling time (tau(R)) in aqueous solution. The critical micelle concentration (cmc = 0.34 mM) of the amphiphilic [Gd(eptpa-C(16))(H(2)O)](2-) chelate was determined by variable-concentration proton relaxivity measurements. A global analysis of the data obtained in variable-temperature and multiple-field (17)O NMR and (1)H NMRD measurements allowed for the determination of parameters governing relaxivity for [Gd(eptpa-C(16))(H(2)O)](2-); this is the first time that paramagnetic micelles with optimized water exchange have been investigated. The water exchange rate was found to be kappa(298)(ex) = 1.7 x 10(8) s(-1), very similar to that previously reported for the nitrobenzyl derivative [Gd(eptpa-bz-NO(2))(H(2)O)](2-) kappa(298)(ex) = 1.5 x 10(8) s(-1)). The rotational dynamics of the micelles were analysed by using the Lipari-Szabo approach. The micelles formed in aqueous solution show considerable flexibility, with a local rotational correlation time of tau(298)(l0) = 330 ps for the Gd(III) segments, which is much shorter than the global rotational correlation time of the supramolecular aggregates, tau(298)(g0) = 2100 ps. This internal flexibility of the micelles is responsible for the limited increase of the proton relaxivity observed on micelle formation (r(1) = 22.59 mM(-1) s(-1) for the micelles versus 9.11 mM(-1) s(-1) for the monomer chelate (20 MHz; 25 degrees C)).


Chemistry: A European Journal | 2008

Metal-ion-dependent biological properties of a chelator-derived somatostatin analogue for tumour targeting.

Axel Heppeler; João P. André; Ingeborg Buschmann; Xuejuan Wang; Jean Claude Reubi; Michael Hennig; Thomas A. Kaden; Helmut Maecke

Somatostatin-based radioligands have been shown to have sensitive imaging properties for neuroendocrine tumours and their metastases. The potential of [(55)Co(dotatoc)] (dotatoc =4,7,10-tricarboxymethyl-1,4,7,10-tetraazacyclododecane-1-ylacetyl-D-Phe-(Cys-Tyr-D-Trp-Lys-Thr-Cys)-threoninol (disulfide bond)) as a new radiopharmaceutical agent for PET has been evaluated. (57)Co was used as a surrogate of the positron emitter (55)Co and the pharmacokinetics of [(57)Co(dotatoc)] were investigated by using two nude mouse models. The somatostatin receptor subtype (sst1-sst5) affinity profile of [(nat)Co(dotatoc)] on membranes transfected with human somatostatin receptor subtypes was assessed by using autoradiographic methods. These studies revealed that [(57)Co(dotatoc)] is an sst2-specific radiopeptide which presents the highest affinity ever found for the sst2 receptor subtype. The rate of internalisation into the AR4-2J cell line also was the highest found for any somatostatin-based radiopeptide. Biodistribution studies, performed in nude mice bearing an AR4-2J tumour or a transfected HEK-sst2 cell-based tumour, showed high and specific uptake in the tumour and in other sst-receptor-expressing tissues, which reflects the high receptor binding affinity and the high rate of internalisation. The pharmacologic differences between [(57)Co(dotatoc)] and [(67)Ga(dotatoc)] are discussed in terms of the structural parameters found for the chelate models [Co(II)(dota)](2-) and [Ga(III)(dota)](-) whose X-ray structures have been determined. Both chelates show six-fold coordination in pseudo-octahedral arrangements.


Ernst Schering Research Foundation workshop | 2007

68Ga-PET radiopharmacy: A generator-based alternative to 18F-radiopharmacy.

Helmut R. Maecke; João P. André

Positron emission tomography (PET) is becoming a dominating method in the field of molecular imaging. Most commonly used radionuclides are accelerator produced 11C and 18F. An alternative method to label biomolecules is the use of metallic positron emitters; among them 68Ga is the most promising as it can be produced from a generator system consisting of an inorganic or organic matrix immobilizing the parent radionuclide 68Ge. Germanium-68 has a long half-life of 271 days which allows the production of long-lived, potentially very cost-effective generator systems. A commercial generator from Obninsk, Russia, is available which uses TiO2 as an inorganic matrix to immobilize 68Ge in the oxidation state IV+. 68Ge(IV) is chemically sufficiently different to allow efficient separation from 68Ga(III). Ga3+ is redox-inert; its coordination chemistry is dominated by its hard acid character. A variety of mono- and bifunctional chelators were developed which allow immobilization of 68Ga3+ and convenient coupling to biomolecules. Especially peptides targeting G-protein coupled receptors overexpressed on human tumour cells have been studied preclinically and in patient studies showing high and specific tumour uptake and specific localization. 68Ga-radiopharmacy may indeed be an alternative to 18F-based radiopharmacy. Freeze-dried, kit-formulated precursors along with the generator may be provided, similar to the 99Mo/99mTc-based radiopharmacy, still the mainstay of nuclear medicine.


Chemical Communications | 1998

1,4,7-Triazacyclononane-1-succinic acid-4,7-diacetic acid (NODASA): a new bifunctional chelator for radio gallium-labelling of biomolecules

João P. André; Helmut R. Maecke; Margareta Zehnder; Ludwig Macko; Kayhan G. Akyel

A new bifunctional chelator NODASA (1,4,7-triazacyclononane-1-succinic acid-4,7-diacetic acid) has been synthesised, its kinetically inert gallium(III) complex was crystallographically characterized and conjugated to a model aminoacidamide showing the feasibility of a prelabelling approach with 68,67Ga.


Journal of Inorganic Biochemistry | 2003

NMR spectroscopy of Group 13 metal ions: biologically relevant aspects

João P. André; Helmut R. Mäcke

In spite of the fact that Group 13 metal ions (Al(3+), Ga(3+), In(3+) and Tl(+/3+)) show no main biological role, they are NMR-active nuclides which can be used in magnetic resonance spectroscopy of biologically relevant systems. The fact that these metal ions are quadrupolar (with the exception of thallium) means that they are particularly sensitive to ligand type and coordination geometry. The line width of the NMR signals of their complexes shows a strong dependence on the symmetry of coordination, which constitutes an effective tool in the elucidation of structures. Here we report published NMR studies of this family of elements, applied to systems of biological importance. Special emphasis is given to binding studies of these cations to biological molecules, such as proteins, and to chelating agents of radiopharmaceutical interest. The possibility of in vivo NMR studies is also stressed, with extension to (27)Al-based MRI (magnetic resonance imaging) experiments.


Journal of Biological Inorganic Chemistry | 1999

Synthesis and physicochemical characterization of a novel precursor for covalently bound macromolecular MRI contrast agents

João P. André; Helmut R. Maecke; Éva Tóth; André Merbach

Abstract The ligand DOTASA was designed and synthesized in the aim of obtaining a kinetically and thermodynamically stable Gd(III) chelate which, through its uncoordinated carboxylate function, will provide an efficient pathway to couple the complex to bio- or macromolecules without affecting the coordination pattern of DOTA. Furthermore, it allows us to study the influence of an extra carboxylate arm on the parameters determining proton relaxivity in comparison to the commercial agent [Gd(DOTA)(H2O)]–. A combined variable-temperature 17O NMR, EPR and nuclear magnetic relaxation dispersion study on the Gd(III) chelate resulted in k298ex=(6.3±0.2)×106 s–1 for the water exchange rate and τ298R=125±2 ps for the rotational correlation time. The slight increase in both k298ex and τ298R, as compared to those for [Gd(DOTA)(H2O)]–, is attributed to the presence of the extra negative charge. The longer rotational correlation time results in a proton relaxivity of 5.03 mM–1 s–1 for [Gd(DOTASA)(H2O)]2–, which is approximately 30% higher than that for [Gd(DOTA)(H2O)]–. The increased water exchange rate of [Gd(DOTASA)(H2O)]2– has no consequence for proton relaxivity since this latter is exclusively limited by fast rotation for both complexes. However, for slowly rotating macromolecular agents, which contain a covalently coupled DOTASA unit instead of a coupled DOTA, this increased exchange rate will have a significant positive effect.


Bioorganic & Medicinal Chemistry Letters | 2010

Gallium labeled NOTA-based conjugates for peptide receptor-mediated medical imaging.

Arsénio Vasconcelos Sá; Áurea A. Matias; M. Isabel M. Prata; Carlos F. G. C. Geraldes; Paula M. T. Ferreira; João P. André

We report a straightforward and efficient synthetic strategy for the synthesis of three model glycine-arginine-glycine-aspartic acid-glycine (GRGDG) conjugates based on derivatives of NOTA and of their Ga(III) complexes targeted to the integrin α(ν)β(3) receptor. (71)Ga NMR spectroscopy showed that the Ga(III)-labeled conjugates are highly stable in aqueous solution. The (67)Ga-labeled conjugates proved to have high kinetic stability and showed a weak but specific binding to the receptors in a U87MG-glioblastoma cell line.


Nuclear Medicine and Biology | 2011

Ga(III) chelates of amphiphilic DOTA-based ligands: synthetic route and in vitro and in vivo studies

André Fontes; M. Isabel M. Prata; Carlos F. G. C. Geraldes; João P. André

In this work, we report on a synthetic strategy using amphiphilic DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid)-based chelators bearing a variable-sized α-alkyl chain at one of the pendant acetate arms (from 6 to 14 carbon atoms), compatible with their covalent coupling to amine-bearing biomolecules. The amphiphilic behavior of the micelles-forming Ga(III) chelates (critical micellar concentration), their stability in blood serum and their lipophilicity (logP) were investigated. Biodistribution studies with the (67)Ga-labeled chelates were performed in Wistar rats, which showed a predominant liver uptake with almost no traces of the radiochelates in the body after 24 h.

Collaboration


Dive into the João P. André's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Éva Tóth

University of Orléans

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lothar Helm

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge