João P. C. Tomé
Instituto Superior Técnico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by João P. C. Tomé.
Marine Drugs | 2010
Anabela Tavares; Carla M. B. Carvalho; Maria A. F. Faustino; Maria G. P. M. S. Neves; João P. C. Tomé; Augusto C. Tomé; José A. S. Cavaleiro; Ângela Cunha; Newton C. M. Gomes; Eliana Alves; Adelaide Almeida
Antimicrobial photodynamic therapy (aPDT) has emerged in the clinical field as a potential alternative to antibiotics to treat microbial infections. No cases of microbial viability recovery or any resistance mechanisms against it are yet known. 5,10,15-tris(1-Methylpyridinium-4-yl)-20-(pentafluorophenyl)-porphyrin triiodide (Tri-Py+-Me-PF) was used as photosensitizer. Vibrio fischeri and recombinant Escherichia coli were the studied bacteria. To determine the bacterial recovery after treatment, Tri-Py+-Me-PF (5.0 μM) was added to bacterial suspensions and the samples were irradiated with white light (40 W m−2) for 270 minutes. Then, the samples were protected from light, aliquots collected at different intervals and the bioluminescence measured. To assess the development of resistance after treatment, bacterial suspensions were exposed to white light (25 minutes), in presence of 5.0 μM of Tri-Py+-Me-PF (99.99% of inactivation) and plated. After the first irradiation period, surviving colonies were collected from the plate and resuspended in PBS. Then, an identical protocol was used and repeated ten times for each bacterium. The results suggest that aPDT using Tri-Py+-Me-PF represents a promising approach to efficiently destroy bacteria since after a single treatment these microorganisms do not recover their viability and after ten generations of partially photosensitized cells neither of the bacteria develop resistance to the photodynamic process.
Journal of the American Chemical Society | 2010
Alessandro Varotto; Chang-Yong Nam; Ivana Radivojevic; João P. C. Tomé; José A. S. Cavaleiro; Charles T. Black; Charles Michael Drain
A core phthalocyanine platform allows engineering of the solubility properties the band gap, shifting the maximum absorption toward the red. A simple method for increasing the efficiency of heterojunction solar cells uses a self-organized blend of phthalocyanine chromophores fabricated by solution processing.
Future Medicinal Chemistry | 2014
Eliana Alves; Maria Af Faustino; Maria G. P. M. S. Neves; Angela Cunha; João P. C. Tomé; Adelaide Almeida
The emergence of microbial resistance is becoming a global problem in clinical and environmental areas. As such, the development of drugs with novel modes of action will be vital to meet the threats created by the rise in microbial resistance. Microbial photodynamic inactivation is receiving considerable attention for its potentialities as a new antimicrobial treatment. This review addresses the interactions between photosensitizers and bacterial cells (binding site and cellular localization), the ultrastructural, morphological and functional changes observed at initial stages and during the course of photodynamic inactivation, the oxidative alterations in specific molecular targets, and a possible development of resistance.
Journal of Applied Microbiology | 2009
Anabela Oliveira; Adelaide Almeida; Carla M. B. Carvalho; João P. C. Tomé; Maria A. F. Faustino; M. G. P. M. S. Neves; Augusto C. Tomé; José A. S. Cavaleiro; Ângela Cunha
Aims: In this study, we propose (i) to study the photodynamic inactivation (PDI) efficiency of neutral and cationic porphyrin derivatives, (ii) to characterize the kinetics of the inactivation process using Bacillus cereus as a model endospore‐producing bacterium and (iii) to conclude on the applicability of porphyrin derivatives in the inactivation of bacterial endospores.
Carbohydrate Research | 2009
Ana R. Soares; João P. C. Tomé; Maria G. P. M. S. Neves; Augusto C. Tomé; José A. S. Cavaleiro; Tomás Torres
The synthesis and structural characterization of two glycophthalocyanines with four or eight unprotected D-galactose units is reported. The sugar units are linked to the macrocycle via the hydroxyl group located at C-6. The water solubility promoted by the carbohydrate moieties provides a potential application of these phthalocyanine derivatives as photosensitizers in photodynamic therapy.
Chemical Communications | 2012
Sandrina Silva; Patrícia Pereira; Patrícia Silva; Filipe A. Almeida Paz; Maria A. F. Faustino; José A. S. Cavaleiro; João P. C. Tomé
Synthesis of water soluble porphyrin and phthalocyanine derivatives with, respectively, eight and sixteen galactose units has been carried out. The combined preliminary photophysical and photochemical features of the new products suggest that they might be promising photodynamic therapeutic agents.
Photochemical and Photobiological Sciences | 2014
Joana Almeida; João P. C. Tomé; Maria G. P. M. S. Neves; Augusto C. Tomé; José A. S. Cavaleiro; Ângela Cunha; Liliana Costa; Maria A. F. Faustino; Adelaide Almeida
One environmental concern related to hospital effluents is discharge of them without preliminary treatment. Antimicrobial photodynamic inactivation (PDI) may represent an alternative to the traditional expensive, unsafe and not always effective disinfection methods. The main goal of this work was to assess the efficiency of PDI on clinical multidrug-resistant (MDR) bacteria in hospital wastewaters in order to evaluate its potential use in treating hospital effluents. The efficiency of PDI was assessed using a cationic porphyrin as the photosensitizer (PS), four MDR bacteria either in phosphate buffered saline or in filtrated hospital wastewaters. The synergistic effect of PDI and antibiotics (ampicillin and chloramphenicol) was also evaluated, as well as the effect of the surfactant sodium dodecyl sulfate (SDS). The results show the efficient inactivation of MDR bacteria in PBS (reduction of 6-8 log after 270 min of irradiation at 40 W m(-2) with 5.0 μM of PS). In wastewater, the inactivation of the four MDR bacteria was again efficient and the decrease in bacterial survival starts even sooner. A faster decrease in bacterial survival occurred when PDI was combined with the addition of antibiotics, at sub-inhibitory and inhibitory concentrations, but the SDS did not affect the PDI efficiency. It can be concluded that PDI has potential to be an effective alternative for the inactivation of MDR bacteria in hospital wastewaters and that the presence of antibiotics may enhance its effectiveness.
Photochemical and Photobiological Sciences | 2010
Liliana Costa; Carla M. B. Carvalho; Maria A. F. Faustino; Maria G. P. M. S. Neves; João P. C. Tomé; Augusto C. Tomé; José A. S. Cavaleiro; Ângela Cunha; Adelaide Almeida
Photodynamic therapy has been used to inactivate microorganisms through the use of targeted photosensitizers. Although the photoinactivation of microorganisms has already been studied under different conditions, a systematic evaluation of irradiation characteristics is still limited. The goal of this study was to test how the light dose, fluence rate and irradiation source affect the viral photoinactivation of a T4-like sewage bacteriophage. The experiments were carried out using white PAR light delivered by fluorescent PAR lamps (40 W m(-2)), sun light (600 W m(-2)) and an halogen lamp (40-1690 W m(-2)). Phage suspensions and two cationic photosensitizers (Tetra-Py(+)-Me, Tri-Py(+)-Me-PF) at concentrations of 0.5, 1.0 and 5.0 microM were used. The results showed that the efficacy of the bacteriophage photoinactivation is correlated not only with the sensitizer and its concentration but also with the light source, energy dose and fluence rate applied. Both photosensitizers at 5.0 microM were able to inactivate the T4-like phage to the limit of detection for each light source and fluence rate. However, depending of the light parameters, different irradiation times are required. The efficiency of photoinactivation is dependent on the spectral emission distribution of the light sources used. Considering the same light source and a fixed light dose applied at different fluence rates, phage inactivation was significantly higher when low fluence rates were used. In this way, the light source, fluence rate and total light dose play an important role in the effectiveness of the antimicrobial photodynamic therapy and should always be considered when establishing an optimal antimicrobial protocol.
Journal of Porphyrins and Phthalocyanines | 2009
Carla M. B. Carvalho; João P. C. Tomé; Maria A. F. Faustino; Maria G. P. M. S. Neves; Augusto C. Tomé; José A. S. Cavaleiro; Liliana Costa; Eliana Alves; Anabela Oliveira; Ângela Cunha; Adelaide Almeida
In this highlight an overview of the advances performed by the Aveiro group on the design and synthesis of tetrapyrrolic photosensitizers with potential photodynamic antimicrobial activity is presented.
Antiviral Research | 2011
Liliana Costa; João P. C. Tomé; Maria G. P. M. S. Neves; Augusto C. Tomé; José A. S. Cavaleiro; Maria A. F. Faustino; Ângela Cunha; Newton C. M. Gomes; Adelaide Almeida
Nowadays, the emergence of drug resistant microorganisms is a public health concern. The antimicrobial photodynamic therapy (aPDT) has an efficient action against a wide range of microorganisms and can be viewed as an alternative approach for treating microbial infections. The aim of this study was to determine if a model target virus (T4-like bacteriophage), in the presence of the tricationic porphyrin 5,10,15-tris(1-methylpyridinium-4-yl)-20-(pentafluorophenyl)porphyrin tri-iodide (Tri-Py(+)-Me-PF), can develop resistance to aPDT and recover its viability after photodynamic treatments. To assess the development of aPDT resistance after repeated treatments, a suspension of T4-like bacteriophage was irradiated with white light (40 Wm(-2)) for 120 min in the presence of 5.0 μM of Tri-Py(+)-Me-PF (99.99% of inactivation) and new phage suspensions were produced from the surviving phages, after each cycle of light exposure. The procedure was repeated ten times. To evaluate the recovery of viral viability after photoinactivation, a suspension of T4-like bacteriophage was irradiated with white light for 120 min in the presence of 5.0 μM of Tri-Py(+)-Me-PF on five consecutive days. In each day, an aliquot of the irradiated suspension was plated and the number of lysis plaques was counted after 24, 48, 72, 96 and 120 h of dark incubation at 37 °C. The profile of bacteriophage photoinactivation did not change after ten consecutive cycles and no recovery of viability was detected after five accumulated cycles of photodynamic treatment. The results suggest that aPDT represents a valuable and promising alternative therapy to treat viral infections, overcoming the problem of microbial resistance.