Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where João P. Hespanha is active.

Publication


Featured researches published by João P. Hespanha.


Proceedings of the IEEE | 2007

A Survey of Recent Results in Networked Control Systems

João P. Hespanha; Payam Naghshtabrizi; Yonggang Xu

Networked control systems (NCSs) are spatially distributed systems for which the communication between sensors, actuators, and controllers is supported by a shared communication network. We review several recent results on estimation, analysis, and controller synthesis for NCSs. The results surveyed address channel limitations in terms of packet-rates, sampling, network delay, and packet dropouts. The results are presented in a tutorial fashion, comparing alternative methodologies


european conference on computer vision | 1996

Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection

Peter N. Belhumeur; João P. Hespanha; David J. Kriegman

We develop a face recognition algorithm which is insensitive to gross variation in lighting direction and facial expression. Taking a pattern classification approach, we consider each pixel in an image as a coordinate in a high-dimensional space. We take advantage of the observation that the images of a particular face under varying illumination direction lie in a 3-D linear subspace of the high dimensional feature space — if the face is a Lambertian surface without self-shadowing. However, since faces are not truly Lambertian surfaces and do indeed produce self-shadowing, images will deviate from this linear subspace. Rather than explicitly modeling this deviation, we project the image into a subspace in a manner which discounts those regions of the face with large deviation. Our projection method is based on Fishers Linear Discriminant and produces well separated classes in a low-dimensional subspace even under severe variation in lighting and facial expressions. The Eigenface technique, another method based on linearly projecting the image space to a low dimensional subspace, has similar computational requirements. Yet, extensive experimental results demonstrate that the proposed “Fisherface” method has error rates that are significantly lower than those of the Eigenface technique when tested on the same database.


IEEE Transactions on Automatic Control | 2004

Uniform stability of switched linear systems: extensions of LaSalle's Invariance Principle

João P. Hespanha

This paper addresses the uniform stability of switched linear systems, where uniformity refers to the convergence rate of the multiple solutions that one obtains as the switching signal ranges over a given set. We provide a collection of results that can be viewed as extensions of LaSalles Invariance Principle to certain classes of switched linear systems. Using these results one can deduce asymptotic stability using multiple Lyapunov functions whose Lie derivatives are only negative semidefinite. Depending on the regularity assumptions placed on the switching signals, one may be able to conclude just asymptotic stability or (uniform) exponential stability. We show by counter-example that the results obtained are tight.


Systems & Control Letters | 1999

Stability of switched systems: a Lie-algebraic condition (

Daniel Liberzon; João P. Hespanha; A. Stephen Morse

We present a sucient condition for asymptotic stability of a switched linear system in terms of the Lie algebra generated by the individual matrices. Namely, if this Lie algebra is solvable, then the switched system is exponentially stable for arbitrary switching. In fact, we show that any family of linear systems satisfying this condition possesses a quadratic common Lyapunov function. We also discuss the implications of this result for switched nonlinear systems. c 1999 Elsevier Science B.V. All rights reserved.


IEEE Transactions on Automatic Control | 2007

Trajectory-Tracking and Path-Following of Underactuated Autonomous Vehicles With Parametric Modeling Uncertainty

António Pedro Aguiar; João P. Hespanha

We address the problem of position trajectory-tracking and path-following control design for underactuated autonomous vehicles in the presence of possibly large modeling parametric uncertainty. For a general class of vehicles moving in either 2- or 3-D space, we demonstrate how adaptive switching supervisory control can be combined with a nonlinear Lyapunov-based tracking control law to solve the problem of global boundedness and convergence of the position tracking error to a neighborhood of the origin that can be made arbitrarily small. The desired trajectory does not need to be of a particular type (e.g., trimming trajectories) and can be any sufficiently smooth bounded curve parameterized by time. We also show how these results can be applied to solve the path-following problem, in which the vehicle is required to converge to and follow a path, without a specific temporal specification. We illustrate our design procedures through two vehicle control applications: a hovercraft (moving on a planar surface) and an underwater vehicle (moving in 3-D space). Simulations results are presented and discussed.


Systems & Control Letters | 2008

Exponential stability of impulsive systems with application to uncertain sampled-data systems

Payam Naghshtabrizi; João P. Hespanha; Andrew R. Teel

We establish exponential stability of nonlinear time-varying impulsive systems by employing Lyapunov functions with discontinuity at the impulse times. Our stability conditions have the property that when specialized to linear impulsive systems, the stability tests can be formulated as Linear Matrix Inequalities (LMIs). Then we consider LTI uncertain sampled-data systems in which there are two sources of uncertainty: the values of the process parameters can be unknown while satisfying a polytopic condition and the sampling intervals can be uncertain and variable. We model such systems as linear impulsive systems and we apply our theorem to the analysis and state-feedback stabilization. We find a positive constant which determines an upper bound on the sampling intervals for which the stability of the closed loop is guaranteed. The control design LMIs also provide controller gains that can be used to stabilize the process. We also consider sampled-data systems with constant sampling intervals and provide results that are less conservative than the ones obtained for variable sampling intervals.


Automatica | 2002

Switching between stabilizing controllers

João P. Hespanha; A. Stephen Morse

This paper deals with the problem of switching between several linear time-invariant (LTI) controllers-all of them capable of stabilizing a specific LTI process-in such a way that the stability of the closed-loop system is guaranteed for any switching sequence. We show that it is possible to find realizations for any given family of controller transfer matrices so that the closed-loop system remains stable, no matter how we switch among the controller. The motivation for this problem is the control of complex systems where conflicting requirements make a single LTI controller unsuitable.


IEEE Transactions on Automatic Control | 2005

Stabilization of nonlinear systems with limited information feedback

Daniel Liberzon; João P. Hespanha

This note is concerned with the problem of stabilizing a nonlinear continuous-time system by using sampled encoded measurements of the state. We demonstrate that global asymptotic stabilization is possible if a suitable relationship holds between the number of values taken by the encoder, the sampling period, and a system parameter, provided that a feedback law achieving input-to-state stability with respect to measurement errors can be found. The issue of relaxing the latter condition is also discussed.


Automatica | 2008

Lyapunov conditions for input-to-state stability of impulsive systems

João P. Hespanha; Daniel Liberzon; Andrew R. Teel

This paper introduces appropriate concepts of input-to-state stability (ISS) and integral-ISS for impulsive systems, i.e., dynamical systems that evolve according to ordinary differential equations most of the time, but occasionally exhibit discontinuities (or impulses). We provide a set of Lyapunov-based sufficient conditions for establishing these ISS properties. When the continuous dynamics are ISS, but the discrete dynamics that govern the impulses are not, the impulses should not occur too frequently, which is formalized in terms of an average dwell-time (ADT) condition. Conversely, when the impulse dynamics are ISS, but the continuous dynamics are not, there must not be overly long intervals between impulses, which is formalized in terms of a novel reverse ADT condition. We also investigate the cases where (i) both the continuous and discrete dynamics are ISS, and (ii) one of these is ISS and the other only marginally stable for the zero input, while sharing a common Lyapunov function. In the former case, we obtain a stronger notion of ISS, for which a necessary and sufficient Lyapunov characterization is available. The use of the tools developed herein is illustrated through examples from a Micro-Electro-Mechanical System (MEMS) oscillator and a problem of remote estimation over a communication network.


Systems & Control Letters | 2003

Overcoming the limitations of adaptive control by means of logic-based switching

João P. Hespanha; Daniel Liberzon; A. Stephen Morse

In this paper we describe a framework for deterministic adaptive control which involves logic-based switching among a family of candidate controllers. We compare it with more conventional adaptive control techniques that rely on continuous tuning, emphasizing how switching and logic can be used to overcome some of the limitations of traditional adaptive control. The issues are discussed in a tutorial, non-technical manner and illustrated with specific examples.

Collaboration


Dive into the João P. Hespanha's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew R. Teel

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge