Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where João Paulo Lima Daher is active.

Publication


Featured researches published by João Paulo Lima Daher.


PLOS ONE | 2011

Dopaminergic Neuronal loss, Reduced Neurite Complexity and Autophagic Abnormalities in Transgenic Mice Expressing G2019S Mutant LRRK2

David Ramonet; João Paulo Lima Daher; Brian M. Lin; Klodjan Stafa; Jaekwang Kim; Rebecca Banerjee; Marie Westerlund; Olga Pletnikova; Liliane Glauser; Lichuan Yang; Ying Liu; Deborah A. Swing; M. Flint Beal; Juan C. Troncoso; J. Michael McCaffery; Nancy A. Jenkins; Neal G. Copeland; Dagmar Galter; Bobby Thomas; Michael K. Lee; Ted M. Dawson; Valina L. Dawson; Darren J. Moore

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset, autosomal dominant familial Parkinsons disease (PD) and also contribute to idiopathic PD. LRRK2 mutations represent the most common cause of PD with clinical and neurochemical features that are largely indistinguishable from idiopathic disease. Currently, transgenic mice expressing wild-type or disease-causing mutants of LRRK2 have failed to produce overt neurodegeneration, although abnormalities in nigrostriatal dopaminergic neurotransmission have been observed. Here, we describe the development and characterization of transgenic mice expressing human LRRK2 bearing the familial PD mutations, R1441C and G2019S. Our study demonstrates that expression of G2019S mutant LRRK2 induces the degeneration of nigrostriatal pathway dopaminergic neurons in an age-dependent manner. In addition, we observe autophagic and mitochondrial abnormalities in the brains of aged G2019S LRRK2 mice and markedly reduced neurite complexity of cultured dopaminergic neurons. These new LRRK2 transgenic mice will provide important tools for understanding the mechanism(s) through which familial mutations precipitate neuronal degeneration and PD.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Abrogation of α-synuclein–mediated dopaminergic neurodegeneration in LRRK2-deficient rats

João Paulo Lima Daher; Laura A. Volpicelli-Daley; Jonathan P. Blackburn; Mark S. Moehle; Andrew B. West

Significance Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common known genetic cause of late-onset Parkinson disease, but the mechanisms underlying LRRK2 action in neurodegeneration are not clear. We demonstrate that rats deficient in LRRK2 expression are protected from dopaminergic neurodegeneration caused by overexpression of α-synuclein or exposure to LPS. LRRK2 expression is induced in proinflammatory brain myeloid cells under pathological conditions. Our results suggest that LRRK2 inhibition may have important neuroprotective effects by critically modulating neuroinflammatory responses. LRRK2 inhibition may therefore be a potentially efficacious approach to slow or stop the progression of brain disorders where myeloid cell activation drives aspects of dysfunction. Missense mutations in the leucine-rich repeat kinase 2 (LRRK2) gene can cause late-onset Parkinson disease. Past studies have provided conflicting evidence for the protective effects of LRRK2 knockdown in models of Parkinson disease as well as other disorders. These discrepancies may be caused by uncertainty in the pathobiological mechanisms of LRRK2 action. Previously, we found that LRRK2 knockdown inhibited proinflammatory responses from cultured microglia cells. Here, we report LRRK2 knockout rats as resistant to dopaminergic neurodegeneration elicited by intracranial administration of LPS. Such resistance to dopaminergic neurodegeneration correlated with reduced proinflammatory myeloid cells recruited in the brain. Additionally, adeno-associated virus-mediated transduction of human α-synuclein also resulted in dopaminergic neurodegeneration in wild-type rats. In contrast, LRRK2 knockout animals had no significant loss of neurons and had reduced numbers of activated myeloid cells in the substantia nigra. Although LRRK2 expression in the wild-type rat midbrain remained undetected under nonpathological conditions, LRRK2 became highly expressed in inducible nitric oxide synthase (iNOS)-positive myeloid cells in the substantia nigra in response to α-synuclein overexpression or LPS exposures. Our data suggest that knocking down LRRK2 may protect from overt cell loss by inhibiting the recruitment of chronically activated proinflammatory myeloid cells. These results may provide value in the translation of LRRK2-targeting therapeutics to conditions where neuroinflammation may underlie aspects of neuronal dysfunction and degeneration.


Human Molecular Genetics | 2013

LRRK2 secretion in exosomes is regulated by 14-3-3

Kyle B. Fraser; Mark S. Moehle; João Paulo Lima Daher; Philip J. Webber; Jeri Y. Williams; Carrie A. Stewart; Talene A. Yacoubian; Rita M. Cowell; Terje Dokland; Tong Ye; Dongquan Chen; Gene P. Siegal; Robert A. Galemmo; Elpida Tsika; Darren J. Moore; David G. Standaert; Kyoko Kojima; James A. Mobley; Andrew B. West

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset Parkinsons disease (PD). Emerging evidence suggests a role for LRRK2 in the endocytic pathway. Here, we show that LRRK2 is released in extracellular microvesicles (i.e. exosomes) from cells that natively express LRRK2. LRRK2 localizes to collecting duct epithelial cells in the kidney that actively secrete exosomes into urine. Purified urinary exosomes contain LRRK2 protein that is both dimerized and phosphorylated. We provide a quantitative proteomic profile of 1673 proteins in urinary exosomes and find that known LRRK2 interactors including 14-3-3 are some of the most abundant exosome proteins. Disruption of the 14-3-3 LRRK2 interaction with a 14-3-3 inhibitor or through acute LRRK2 kinase inhibition potently blocks LRRK2 release in exosomes, but familial mutations in LRRK2 had no effect on secretion. LRRK2 levels were overall comparable but highly variable in urinary exosomes derived from PD cases and age-matched controls, although very high LRRK2 levels were detected in some PD affected cases. We further characterized LRRK2 exosome release in neurons and macrophages in culture, and found that LRRK2-positive exosomes circulate in cerebral spinal fluid (CSF). Together, these results define a pathway for LRRK2 extracellular release, clarify one function of the LRRK2 14-3-3 interaction and provide a foundation for utilization of LRRK2 as a biomarker in clinical trials.


Journal of Biological Chemistry | 2015

Leucine-rich Repeat Kinase 2 (LRRK2) Pharmacological Inhibition Abates α-Synuclein Gene-induced Neurodegeneration

João Paulo Lima Daher; Hisham Abdelmotilib; Xianzhen Hu; Laura A. Volpicelli-Daley; Mark S. Moehle; Kyle B. Fraser; Elie Needle; Yi Chen; Stefanus J. Steyn; Paul Galatsis; Warren D. Hirst; Andrew B. West

Background: LRRK2 kinase activity has been implicated in Parkinson disease (PD). Results: LRRK2 kinase inhibition attenuated neurodegeneration in LRRK2 transgenic and wild-type rats. Conclusion: Chronic inhibition of LRRK2 kinase activity is well tolerated in rats and provides neuroprotection from α-synuclein overexpression. Significance: These results warrant further studies that test the therapeutic potential of LRRK2 kinase inhibitors in additional PD models. Therapeutic approaches to slow or block the progression of Parkinson disease (PD) do not exist. Genetic and biochemical studies implicate α-synuclein and leucine-rich repeat kinase 2 (LRRK2) in late-onset PD. LRRK2 kinase activity has been linked to neurodegenerative pathways. However, the therapeutic potential of LRRK2 kinase inhibitors is not clear because significant toxicities have been associated with one class of LRRK2 kinase inhibitors. Furthermore, LRRK2 kinase inhibitors have not been tested previously for efficacy in models of α-synuclein-induced neurodegeneration. To better understand the therapeutic potential of LRRK2 kinase inhibition in PD, we evaluated the tolerability and efficacy of a LRRK2 kinase inhibitor, PF-06447475, in preventing α-synuclein-induced neurodegeneration in rats. Both wild-type rats as well as transgenic G2019S-LRRK2 rats were injected intracranially with adeno-associated viral vectors expressing human α-synuclein in the substantia nigra. Rats were treated with PF-06447475 or a control compound for 4 weeks post-viral transduction. We found that rats expressing G2019S-LRRK2 have exacerbated dopaminergic neurodegeneration and inflammation in response to the overexpression of α-synuclein. Both neurodegeneration and neuroinflammation associated with G2019S-LRRK2 expression were mitigated by LRRK2 kinase inhibition. Furthermore, PF-06447475 provided neuroprotection in wild-type rats. We could not detect adverse pathological indications in the lung, kidney, or liver of rats treated with PF-06447475. These results demonstrate that pharmacological inhibition of LRRK2 is well tolerated for a 4-week period of time in rats and can counteract dopaminergic neurodegeneration caused by acute α-synuclein overexpression.


Human Molecular Genetics | 2012

Neurodegenerative phenotypes in an A53T α-synuclein transgenic mouse model are independent of LRRK2

João Paulo Lima Daher; Olga Pletnikova; Saskia Biskup; Alessandra Musso; Sandra Gellhaar; Dagmar Galter; Juan C. Troncoso; Michael K. Lee; Ted M. Dawson; Valina L. Dawson; Darren J. Moore

Mutations in the genes encoding LRRK2 and α-synuclein cause autosomal dominant forms of familial Parkinsons disease (PD). Fibrillar forms of α-synuclein are a major component of Lewy bodies, the intracytoplasmic proteinaceous inclusions that are a pathological hallmark of idiopathic and certain familial forms of PD. LRRK2 mutations cause late-onset familial PD with a clinical, neurochemical and, for the most part, neuropathological phenotype that is indistinguishable from idiopathic PD. Importantly, α-synuclein-positive Lewy bodies are the most common pathology identified in the brains of PD subjects harboring LRRK2 mutations. These observations may suggest that LRRK2 functions in a common pathway with α-synuclein to regulate its aggregation. To explore the potential pathophysiological interaction between LRRK2 and α-synuclein in vivo, we modulated LRRK2 expression in a well-established human A53T α-synuclein transgenic mouse model with transgene expression driven by the hindbrain-selective prion protein promoter. Deletion of LRRK2 or overexpression of human G2019S-LRRK2 has minimal impact on the lethal neurodegenerative phenotype that develops in A53T α-synuclein transgenic mice, including premature lethality, pre-symptomatic behavioral deficits and human α-synuclein or glial neuropathology. We also find that endogenous or human LRRK2 and A53T α-synuclein do not interact together to influence the number of nigrostriatal dopaminergic neurons. Taken together, our data suggest that α-synuclein-related pathology, which occurs predominantly in the hindbrain of this A53T α-synuclein mouse model, occurs largely independently from LRRK2 expression. These observations fail to provide support for a pathophysiological interaction of LRRK2 and α-synuclein in vivo, at least within neurons of the mouse hindbrain.


Molecular Neurodegeneration | 2009

Conditional transgenic mice expressing C-terminally truncated human α-synuclein (αSyn119) exhibit reduced striatal dopamine without loss of nigrostriatal pathway dopaminergic neurons

João Paulo Lima Daher; Mingyao Ying; Rebecca Banerjee; Rebecca S McDonald; Myriam Dumas Hahn; Lichuan Yang; M. Flint Beal; Bobby Thomas; Valina L. Dawson; Ted M. Dawson; Darren J. Moore

BackgroundMissense mutations and multiplications of the α-synuclein gene cause autosomal dominant familial Parkinsons disease (PD). α-Synuclein protein is also a major component of Lewy bodies, the hallmark pathological inclusions of PD. Therefore, α-synuclein plays an important role in the pathogenesis of familial and sporadic PD. To model α-synuclein-linked disease in vivo, transgenic mouse models have been developed that express wild-type or mutant human α-synuclein from a variety of neuronal-selective heterologous promoter elements. These models exhibit a variety of behavioral and neuropathological features resembling some aspects of PD. However, an important deficiency of these models is the observed lack of robust or progressive nigrostriatal dopaminergic neuronal degeneration that is characteristic of PD.ResultsWe have developed conditional α-synuclein transgenic mice that can express A53T, E46K or C-terminally truncated (1–119) human α-synuclein pathological variants from the endogenous murine ROSA26 promoter in a Cre recombinase-dependent manner. Using these mice, we have evaluated the expression of these α-synuclein variants on the integrity and viability of nigral dopaminergic neurons with age. Expression of A53T α-synuclein or truncated αSyn119 selectively in nigrostriatal pathway dopaminergic neurons for up to 12 months fails to precipitate dopaminergic neuronal loss in these mice. However, αSyn119 expression in nigral dopaminergic neurons for up to 12 months causes a marked reduction in the levels of striatal dopamine and its metabolites together with other subtle neurochemical alterations.ConclusionWe have developed and evaluated novel conditional α-synuclein transgenic mice with transgene expression directed selectively to nigrostriatal dopaminergic neurons as a potential new mouse model of PD. Our data support the pathophysiological relevance of C-terminally truncated α-synuclein species in vivo. The expression of αSyn119 in the mouse nigrostriatal dopaminergic pathway may provide a useful model of striatal dopamine depletion and could potentially provide a presymptomatic model of PD perhaps representative of the earliest derangements in dopaminergic neuronal function observed prior to neuronal loss. These conditional α-synuclein transgenic mice provide novel tools for evaluating and dissecting the age-related effects of α-synuclein pathological variants on the function of the nigrostriatal dopaminergic pathway or other specific neuronal populations.


The Journal of Neuroscience | 2016

G2019S-LRRK2 Expression Augments α-Synuclein Sequestration into Inclusions in Neurons

Laura A. Volpicelli-Daley; Hisham Abdelmotilib; Zhiyong Liu; Lindsay Stoyka; João Paulo Lima Daher; Austen J. Milnerwood; Vivek K. Unni; Warren D. Hirst; Zhenyu Yue; Hien Zhao; Kyle B. Fraser; Richard E. Kennedy; Andrew B. West

Pathologic inclusions define α-synucleinopathies that include Parkinsons disease (PD). The most common genetic cause of PD is the G2019S LRRK2 mutation that upregulates LRRK2 kinase activity. However, the interaction between α-synuclein, LRRK2, and the formation of α-synuclein inclusions remains unclear. Here, we show that G2019S-LRRK2 expression, in both cultured neurons and dopaminergic neurons in the rat substantia nigra pars compact, increases the recruitment of endogenous α-synuclein into inclusions in response to α-synuclein fibril exposure. This results from the expression of mutant G2019S-LRRK2, as overexpression of WT-LRRK2 not only does not increase formation of inclusions but reduces their abundance. In addition, treatment of primary mouse neurons with LRRK2 kinase inhibitors, PF-06447475 and MLi-2, blocks G2019S-LRRK2 effects, suggesting that the G2019S-LRRK2 potentiation of inclusion formation depends on its kinase activity. Overexpression of G2019S-LRRK2 slightly increases, whereas WT-LRRK2 decreases, total levels of α-synuclein. Knockdown of total α-synuclein with potent antisense oligonucleotides substantially reduces inclusion formation in G2019S-LRRK2-expressing neurons, suggesting that LRRK2 influences α-synuclein inclusion formation by altering α-synuclein levels. These findings support the hypothesis that G2019S-LRRK2 may increase the progression of pathological α-synuclein inclusions after the initial formation of α-synuclein pathology by increasing a pool of α-synuclein that is more susceptible to forming inclusions. SIGNIFICANCE STATEMENT α-Synuclein inclusions are found in the brains of patients with many different neurodegenerative diseases. Point mutation, duplication, or triplication of the α-synuclein gene can all cause Parkinsons disease (PD). The G2019S mutation in LRRK2 is the most common known genetic cause of PD. The interaction between G2019S-LRRK2 and α-synuclein may uncover new mechanisms and targets for neuroprotection. Here, we show that expression of G2019S-LRRK2 increases α-synuclein mobility and enhances aggregation of α-synuclein in primary cultured neurons and in dopaminergic neurons of the substantia nigra pars compacta, a susceptible brain region in PD. Potent LRRK2 kinase inhibitors, which are being developed for clinical use, block the increased α-synuclein aggregation in G2019S-LRRK2-expressing neurons. These results demonstrate that α-synuclein inclusion formation in neurons can be blocked and that novel therapeutic compounds targeting this process by inhibiting LRRK2 kinase activity may slow progression of PD-associated pathology.


Human Molecular Genetics | 2015

The G2019S LRRK2 mutation increases myeloid cell chemotactic responses and enhances LRRK2 binding to actin-regulatory proteins

Mark S. Moehle; João Paulo Lima Daher; Travis D. Hull; Ravindra Boddu; Hisham Abdelmotilib; James A. Mobley; George T. Kannarkat; Malú G. Tansey; Andrew B. West

The Leucine rich repeat kinase 2 (LRRK2) gene is genetically and biochemically linked to several diseases that involve innate immunity. LRRK2 protein is highly expressed in phagocytic cells of the innate immune system, most notably in myeloid cells capable of mounting potent pro-inflammatory responses. Knockdown of LRRK2 protein in these cells reduces pro-inflammatory responses. However, the effect of LRRK2 pathogenic mutations that cause Parkinsons disease on myeloid cell function is not clear but could provide insight into LRRK2-linked disease. Here, we find that rats expressing G2019S LRRK2 have exaggerated pro-inflammatory responses and subsequent neurodegeneration after lipopolysaccharide injections in the substantia nigra, with a marked increase in the recruitment of CD68 myeloid cells to the site of injection. While G2019S LRRK2 expression did not affect immunological homeostasis, myeloid cells expressing G2019S LRRK2 show enhanced chemotaxis both in vitro in two-chamber assays and in vivo in response to thioglycollate injections in the peritoneum. The G2019S mutation enhanced the association between LRRK2 and actin-regulatory proteins that control chemotaxis. The interaction between G2019S LRRK2 and actin-regulatory proteins can be blocked by LRRK2 kinase inhibitors, although we did not find evidence that LRRK2 phosphorylated these interacting proteins. These results suggest that the primary mechanism of G2019S LRRK2 with respect to myeloid cell function in disease may be related to exaggerated chemotactic responses.


Molecular and Cellular Biochemistry | 2009

The identification of a caffeine-induced Ca2+ influx pathway in rat primary sensory neurons

João Paulo Lima Daher; Tony D. Gover; Thais Moreira; Vânia Glória Silami Lopes; Daniel Weinreich


Rev. Soc. Bras. Clín. Méd | 2012

Utilização do diclofenaco na prática clínica: revisão das evidências terapêuticas e ações farmacológicas

Mauro Geller; Abouch Valenty Krymchantowski; Marcio Steinbruch; Karin Soares Gonçalves Cunha; Márcia Gonçalves Ribeiro; Lisa Oliveira; David Ozeri; João Paulo Lima Daher

Collaboration


Dive into the João Paulo Lima Daher's collaboration.

Top Co-Authors

Avatar

Andrew B. West

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark S. Moehle

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Hisham Abdelmotilib

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Kyle B. Fraser

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Laura A. Volpicelli-Daley

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Ted M. Dawson

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Valina L. Dawson

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Mauro Geller

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge