Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where João S. Soares is active.

Publication


Featured researches published by João S. Soares.


Annals of Biomedical Engineering | 2013

Evaluation of Shear-Induced Platelet Activation Models Under Constant and Dynamic Shear Stress Loading Conditions Relevant to Devices

Jawaad Sheriff; João S. Soares; Michalis Xenos; Jolyon Jesty; Marvin J. Slepian; Danny Bluestein

The advent of implantable blood-recirculating devices such as left ventricular assist devices and prosthetic heart valves provides a viable therapy for patients with end-stage heart failure and valvular disease. However, device-generated pathological flow patterns result in thromboembolic complications that require complex and lifelong anticoagulant therapy, which entails hemorrhagic risks and is not appropriate for certain patients. Optimizing the thrombogenic performance of such devices utilizing numerical simulations requires the development of predictive platelet activation models that account for variations in shear-loading rates characterizing blood flow through such devices. Platelets were exposed in vitro to both dynamic and constant shear stress conditions emulating those found in blood-recirculating devices in order to determine their shear-induced activation and sensitization response. Both these behaviors were found to be dependent on the shear loading rates, in addition to shear stress magnitude and exposure time. We then critically examined several current models and evaluated their predictive capabilities using these results. Shear loading rate terms were then included to account for dynamic aspects that are either ignored or partially considered by these models, and model parameters were optimized. Independent optimization for each of the two types of shear stress exposure conditions tested resulted in different sets of best-fit constants, indicating that universal optimization may not be possible. Inherent limitations of the current models require a paradigm shift from these integral-based discretized power law models to better address the dynamic conditions encountered in blood-recirculating devices.The advent of implantable blood-recirculating devices such as left ventricular assist devices and prosthetic heart valves provides a viable therapy for patients with end-stage heart failure and valvular disease. However, device-generated pathological flow patterns result in thromboembolic complications that require complex and lifelong anticoagulant therapy, which entails hemorrhagic risks and is not appropriate for certain patients. Optimizing the thrombogenic performance of such devices utilizing numerical simulations requires the development of predictive platelet activation models that account for variations in shear-loading rates characterizing blood flow through such devices. Platelets were exposed in vitro to both dynamic and constant shear stress conditions emulating those found in blood-recirculating devices in order to determine their shear-induced activation and sensitization response. Both these behaviors were found to be dependent on the shear loading rates, in addition to shear stress magnitude and exposure time. We then critically examined several current models and evaluated their predictive capabilities using these results. Shear loading rate terms were then included to account for dynamic aspects that are either ignored or partially considered by these models, and model parameters were optimized. Independent optimization for each of the two types of shear stress exposure conditions tested resulted in different sets of best-fit constants, indicating that universal optimization may not be possible. Inherent limitations of the current models require a paradigm shift from these integral-based discretized power law models to better address the dynamic conditions encountered in blood-recirculating devices.


Journal of Biomechanical Engineering-transactions of The Asme | 2014

Thromboresistance Comparison of the HeartMate II Ventricular Assist Device With the Device Thrombogenicity Emulation-Optimized HeartAssist 5 VAD

Wei-Che Chiu; Gaurav Girdhar; Michalis Xenos; Yared Alemu; João S. Soares; Shmuel Einav; Marvin J. Slepian; Danny Bluestein

Approximately 7.5 × 106 patients in the US currently suffer from end-stage heart failure. The FDA has recently approved the designations of the Thoratec HeartMate II ventricular assist device (VAD) for both bridge-to-transplant and destination therapy (DT) due to its mechanical durability and improved hemodynamics. However, incidence of pump thrombosis and thromboembolic events remains high, and the life-long complex pharmacological regimens are mandatory in its VAD recipients. We have previously successfully applied our device thrombogenicity emulation (DTE) methodology for optimizing device thromboresistance to the Micromed Debakey VAD, and demonstrated that optimizing device features implicated in exposing blood to elevated shear stresses and exposure times significantly reduces shear-induced platelet activation and significantly improves the device thromboresistance. In the present study, we compared the thrombogenicity of the FDA-approved HeartMate II VAD with the DTE-optimized Debakey VAD (now labeled HeartAssist 5). With quantitative probability density functions of the stress accumulation along large number of platelet trajectories within each device which were extracted from numerical flow simulations in each device, and through measurements of platelet activation rates in recirculation flow loops, we specifically show that: (a) Platelets flowing through the HeartAssist 5 are exposed to significantly lower stress accumulation that lead to platelet activation than the HeartMate II, especially at the impeller-shroud gap regions (b) Thrombus formation patterns observed in the HeartMate II are absent in the HeartAssist 5 (c) Platelet activation rates (PAR) measured in vitro with the VADs mounted in recirculation flow-loops show a 2.5-fold significantly higher PAR value for the HeartMate II. This head to head thrombogenic performance comparative study of the two VADs, one optimized with the DTE methodology and one FDA-approved, demonstrates the efficacy of the DTE methodology for drastically reducing the device thrombogenic potential, validating the need for a robust in silico/in vitro optimization methodology for improving cardiovascular devices thromboresistance.


Science Translational Medicine | 2016

Electromechanical cardioplasty using a wrapped elasto-conductive epicardial mesh

Jinkyung Park; Suji Choi; Ajit H. Janardhan; Se-Yeon Lee; Samarth Raut; João S. Soares; Kwangsoo Shin; Shixuan Yang; Chungkeun Lee; Ki-Woon Kang; Hye Rim Cho; Seok Joo Kim; Pilseon Seo; Wonji Hyun; Sungmook Jung; Hye-Jeong Lee; Nohyun Lee; Seung Hong Choi; Michael S. Sacks; Nanshu Lu; Mark E. Josephson; Taeghwan Hyeon; Dae-Hyeong Kim; Hye Jin Hwang

A mesh made of a conductive nanowire composite can be wrapped around the heart to improve hemodynamics in experimental heart failure in rodents. An electromechanical hug for the heart Heart failure can be treated by pacemakers to keep the beats in rhythm, but pacemakers apply electrical stimulation at specific points and do not provide comprehensive coverage of the entire organ. Park and colleagues therefore devised an electric mesh that wraps around the heart to deliver electrical impulses to the whole ventricular myocardium. The heart wrap was made from silver nanowires embedded in a rubber polymer that could conform to the unique three-dimensional anatomy of different hearts. In rats that had a heart attack, the mesh integrated structurally and electrically with the myocardium and exerted beneficial effects, including preserved diastolic relaxation, reduced wall stress, and improved cardiac contractile function. The mesh also terminated induced ventricular arrhythmia, acting as an epicardial defibrillator. Such epicardial meshes have been tested in clinical trials before and were effective in preventing ventricular remodeling but showed controversial results in long-term survival. The authors hope that their device, which is designed to integrate more faithfully with the heart’s structure and electrical conduction system, is more consistent in people. Heart failure remains a major public health concern with a 5-year mortality rate higher than that of most cancers. Myocardial disease in heart failure is frequently accompanied by impairment of the specialized electrical conduction system and myocardium. We introduce an epicardial mesh made of electrically conductive and mechanically elastic material, to resemble the innate cardiac tissue and confer cardiac conduction system function, to enable electromechanical cardioplasty. Our epicardium-like substrate mechanically integrated with the heart and acted as a structural element of cardiac chambers. The epicardial device was designed with elastic properties nearly identical to the epicardial tissue itself and was able to detect electrical signals reliably on the moving rat heart without impeding diastolic function 8 weeks after induced myocardial infarction. Synchronized electrical stimulation over the ventricles by the epicardial mesh with the high conductivity of 11,210 S/cm shortened total ventricular activation time, reduced inherent wall stress, and improved several measures of systolic function including increases of 51% in fractional shortening, ~90% in radial strain, and 42% in contractility. The epicardial mesh was also capable of delivering an electrical shock to terminate a ventricular tachyarrhythmia in rodents. Electromechanical cardioplasty using an epicardial mesh is a new pathway toward reconstruction of the cardiac tissue and its specialized functions.


Biomechanics and Modeling in Mechanobiology | 2013

A novel mathematical model of activation and sensitization of platelets subjected to dynamic stress histories.

João S. Soares; Jawaad Sheriff; Danny Bluestein

Blood recirculating devices, such as ventricular assist devices and prosthetic heart valves, are burdened by thromboembolic complications requiring complex and lifelong anticoagulant therapy with its inherent hemorrhagic risks. Pathologic flow patterns occurring in such devices chronically activate platelets, and the optimization of their thrombogenic performance requires the development of flow-induced platelet activation models. However, existing models are based on empirical correlations using the well-established power law paradigm of constant levels of shear stress during certain exposure times as factors for mechanical platelet activation. These models are limited by their range of application and do not account for other relevant phenomena, such as loading rate dependence and platelet sensitization to high stress conditions, which characterize the dynamic flow conditions in devices. These limitations were addressed by developing a new class of phenomenological stress-induced platelet activation models that specifies the rate of platelet activation as a function of the entire stress history and results in a differential equation that can be directly integrated to calculate the cumulative levels of activation. The proposed model reverts to the power law under constant shear stress conditions and is able to describe experimental results in response to a diverse range of highly dynamic stress conditions found in blood recirculating devices. The model was tested in vitro under emulated device flow conditions and correlates well with experimental results. This new model provides a reliable and robust mathematical tool that can be incorporated into computational fluid dynamic studies in order to optimize design, with the goal of improving the thrombogenic performance of blood recirculating devices.


Annals of Biomedical Engineering | 2013

Simulation of Platelets Suspension Flowing Through a Stenosis Model Using a Dissipative Particle Dynamics Approach

João S. Soares; Chao Gao; Yared Alemu; Marvin J. Slepian; Danny Bluestein

Stresses on blood cellular constituents induced by blood flow can be represented by a continuum approach down to the μm level; however, the molecular mechanisms of thrombosis and platelet activation and aggregation are on the order of nm. The coupling of the disparate length and time scales between molecular and macroscopic transport phenomena represents a major computational challenge. In order to bridge the gap between macroscopic flow scales and the cellular scales with the goal of depicting and predicting flow induced thrombogenicity, multi-scale approaches based on particle methods are better suited. We present a top-scale model to describe bulk flow of platelet suspensions: we employ dissipative particle dynamics to model viscous flow dynamics and present a novel and general no-slip boundary condition that allows the description of three-dimensional viscous flows through complex geometries. Dissipative phenomena associated with boundary layers and recirculation zones are observed and favorably compared to benchmark viscous flow solutions (Poiseuille and Couette flows). Platelets in suspension, modeled as coarse-grained finite-sized ensembles of bound particles constituting an enclosed deformable membrane with flat ellipsoid shape, show self-orbiting motions in shear flows consistent with Jeffery’s orbits, and are transported with the flow, flipping and colliding with the walls and interacting with other platelets.


Journal of The Mechanical Behavior of Biomedical Materials | 2016

Large strain stimulation promotes extracellular matrix production and stiffness in an elastomeric scaffold model

Antonio D'Amore; João S. Soares; John A. Stella; Will Zhang; Nicholas J. Amoroso; John E. Mayer; William R. Wagner; Michael S. Sacks

Mechanical conditioning of engineered tissue constructs is widely recognized as one of the most relevant methods to enhance tissue accretion and microstructure, leading to improved mechanical behaviors. The understanding of the underlying mechanisms remains rather limited, restricting the development of in silico models of these phenomena, and the translation of engineered tissues into clinical application. In the present study, we examined the role of large strip-biaxial strains (up to 50%) on ECM synthesis by vascular smooth muscle cells (VSMCs) micro-integrated into electrospun polyester urethane urea (PEUU) constructs over the course of 3 weeks. Experimental results indicated that VSMC biosynthetic behavior was quite sensitive to tissue strain maximum level, and that collagen was the primary ECM component synthesized. Moreover, we found that while a 30% peak strain level achieved maximum ECM synthesis rate, further increases in strain level lead to a reduction in ECM biosynthesis. Subsequent mechanical analysis of the formed collagen fiber network was performed by removing the scaffold mechanical responses using a strain-energy based approach, showing that the denovo collagen also demonstrated mechanical behaviors substantially better than previously obtained with small strain training and comparable to mature collagenous tissues. We conclude that the application of large deformations can play a critical role not only in the quantity of ECM synthesis (i.e. the rate of mass production), but also on the modulation of the stiffness of the newly formed ECM constituents. The improved understanding of the process of growth and development of ECM in these mechano-sensitive cell-scaffold systems will lead to more rational design and manufacturing of engineered tissues operating under highly demanding mechanical environments.


Volume 1B: Extremity; Fluid Mechanics; Gait; Growth, Remodeling, and Repair; Heart Valves; Injury Biomechanics; Mechanotransduction and Sub-Cellular Biophysics; MultiScale Biotransport; Muscle, Tendon and Ligament; Musculoskeletal Devices; Multiscale Mechanics; Thermal Medicine; Ocular Biomechanics; Pediatric Hemodynamics; Pericellular Phenomena; Tissue Mechanics; Biotransport Design and Devices; Spine; Stent Device Hemodynamics; Vascular Solid Mechanics; Student Paper and Design Competitions | 2013

Multiscale Modeling of Flow Induced Thrombogenicity Using Dissipative Particle Dynamics and Coarse Grained Molecular Dynamics

Peng Zhang; Jawaad Sheriff; João S. Soares; Chao Gao; Seetha Pothapragada; Na Zhang; Yuefan Deng; Danny Bluestein

The coagulation cascade of blood may be initiated by flow induced platelet activation, which prompts clot formation in prosthetic cardiovascular devices and arterial disease processes. While platelet activation may be induced by biochemical agonists, shear stresses arising from pathological flow patterns enhance the propensity of platelets to activate and initiate the intrinsic pathway of coagulation, leading to thrombosis. Upon activation platelets undergo complex biochemical and morphological changes: organelles are centralized, membrane glycoproteins undergo conformational changes, and adhesive pseudopods are extended. Activated platelets polymerize fibrinogen into a fibrin network that enmeshes red blood cells. Activated platelets also cross-talk and aggregate to form thrombi. Current numerical simulations to model this complex process mostly treat blood as a continuum and solve the Navier-Stokes equations governing blood flow, coupled with diffusion-convection-reaction equations. It requires various complex constitutive relations or simplifying assumptions, and is limited to μm level scales. However, molecular mechanisms governing platelet shape change upon activation and their effect on rheological properties can be in the nm level scales. To address this challenge, a multiscale approach which departs from continuum approaches, may offer an effective means to bridge the gap between macroscopic flow and cellular scales. Coarse Grained Molecular dynamics (CGMD) and discrete/dissipative particle dynamics (DPD) methods have been employed in recent years to simulate complex processes at the molecular scales, and various viscous fluids at low-to-high Reynolds numbers at mesoscopic scales. Such particle methods possess important properties at the mesoscopic scale: complex fluids with heterogeneous particles can be modeled, allowing the simulation of processes which are otherwise very difficult to solve by continuum approaches. It is becoming a powerful tool for simulating complex blood flow, red blood cells interactions, and platelet-mediated thrombosis involving platelet activation, aggregation, and adhesion.Copyright


Acta Biomaterialia | 2017

A mathematical model for the determination of forming tissue moduli in needled-nonwoven scaffolds

João S. Soares; Will Zhang; Michael S. Sacks

Formation of engineering tissues (ET) remains an important scientific area of investigation for both clinical translational and mechanobiological studies. Needled-nonwoven (NNW) scaffolds represent one of the most ubiquitous biomaterials based on their well-documented capacity to sustain tissue formation and the unique property of substantial construct stiffness amplification, the latter allowing for very sensitive determination of forming tissue modulus. Yet, their use in more fundamental studies is hampered by the lack of: (1) substantial understanding of the mechanics of the NNW scaffold itself under finite deformations and means to model the complex mechanical interactions between scaffold fibers, cells, and de novo tissue; and (2) rational models with reliable predictive capabilities describing their evolving mechanical properties and their response to mechanical stimulation. Our objective is to quantify the mechanical properties of the forming ET phase in constructs that utilize NNW scaffolds. We present herein a novel mathematical model to quantify their stiffness based on explicit considerations of the modulation of NNW scaffold fiber-fiber interactions and effective fiber stiffness by surrounding de novo ECM. Specifically, fibers in NNW scaffolds are effectively stiffer than if acting alone due to extensive fiber-fiber cross-over points that impart changes in fiber geometry, particularly crimp wavelength and amplitude. Fiber-fiber interactions in NNW scaffolds also play significant role in the bulk anisotropy of the material, mainly due to fiber buckling and large translational out-of-plane displacements occurring to fibers undergoing contraction. To calibrate the model parameters, we mechanically tested impregnated NNW scaffolds with polyacrylamide (PAM) gels with a wide range of moduli with values chosen to mimic the effects of surrounding tissues on the scaffold fiber network. Results indicated a high degree of model fidelity over a wide range of planar strains. Lastly, we illustrated the impact of our modeling approach quantifying the stiffness of engineered ECM after in vitro incubation and early stages of in vivo implantation obtained in a concurrent study of engineered tissue pulmonary valves in an ovine model. STATEMENT OF SIGNIFICANCE Regenerative medicine has the potential to fully restore diseased tissues or entire organs with engineered tissues. Needled-nonwoven scaffolds can be employed to serve as the support for their growth. However, there is a lack of understanding of the mechanics of these materials and their interactions with the forming tissues. We developed a mathematical model for these scaffold-tissue composites to quantify the mechanical properties of the forming tissues. Firstly, these measurements are pivotal to achieve functional requirements for tissue engineering implants; however, the theoretical development yielded critical insight into particular mechanisms and behaviors of these scaffolds that were not possible to conjecture without the insight given by modeling, let alone describe or foresee a priori.


Journal of Medical Devices-transactions of The Asme | 2013

Multiscale Modeling of Flow Induced Thrombogenicity With Dissipative Particle Dynamics and Molecular Dynamics

Danny Bluestein; João S. Soares; Peng Zhang; Chao Gao; Seetha Pothapragada; Na Zhang; Marvin J. Slepian; Yuefan Deng

The coagulation cascade of blood may be initiated by flow induced platelet activation, which prompts clot formation in prosthetic cardiovascular devices and arterial disease processes. While platelet activation may be induced by biochemical agonists, shear stresses arising from pathological flow patterns enhance the propensity of platelets to activate and initiate the intrinsic pathway of coagulation, leading to thrombosis. Upon activation platelets undergo complex biochemical and morphological changes: organelles are centralized, membrane glycoproteins undergo conformational changes, and adhesive pseudopods are extended. Activated platelets polymerize fibrinogen into a fibrin network that enmeshes red blood cells. Activated platelets also cross-talk and aggregate to form thrombi. Current numerical simulations to model this complex process mostly treat blood as a continuum and solve the Navier-Stokes equations governing blood flow, coupled with diffusion-convection-reaction equations. It requires various complex constitutive relations or simplifying assumptions, and is limited to μm level scales. However, molecular mechanisms governing platelet shape change upon activation and their effect on rheological properties can be in the nm level scales. To address this challenge, a multiscale approach which departs from continuum approaches, may offer an effective means to bridge the gap between macroscopic flow and cellular scales. Molecular dynamics (MD) and dissipative particle dynamics (DPD) methods have been employed in recent years to simulate complex processes at the molecular scales, and various viscous fluids at low-to-high Reynolds numbers at mesoscopic scales. Such particle methods possess important properties at the mesoscopic scale: complex fluids with heterogeneous particles can be modeled, allowing the simulation of processes which are otherwise very difficult to solve by continuum approaches. It is becoming a powerful tool for simulating complex blood flow, red blood cells interactions, and platelet-mediated thrombosis involving platelet activation, aggregation, and adhesion.Copyright


Biomechanics and Modeling in Mechanobiology | 2018

An integrated inverse model-experimental approach to determine soft tissue three-dimensional constitutive parameters: application to post-infarcted myocardium

Reza Avazmohammadi; David S. Li; Thomas Leahy; Elizabeth Shih; João S. Soares; Joseph H. Gorman; Robert C. Gorman; Michael S. Sacks

Knowledge of the complete three-dimensional (3D) mechanical behavior of soft tissues is essential in understanding their pathophysiology and in developing novel therapies. Despite significant progress made in experimentation and modeling, a complete approach for the full characterization of soft tissue 3D behavior remains elusive. A major challenge is the complex architecture of soft tissues, such as myocardium, which endows them with strongly anisotropic and heterogeneous mechanical properties. Available experimental approaches for quantifying the 3D mechanical behavior of myocardium are limited to preselected planar biaxial and 3D cuboidal shear tests. These approaches fall short in pursuing a model-driven approach that operates over the full kinematic space. To address these limitations, we took the following approach. First, based on a kinematical analysis and using a given strain energy density function (SEDF), we obtained an optimal set of displacement paths based on the full 3D deformation gradient tensor. We then applied this optimal set to obtain novel experimental data from a 1-cm cube of post-infarcted left ventricular myocardium. Next, we developed an inverse finite element (FE) simulation of the experimental configuration embedded in a parameter optimization scheme for estimation of the SEDF parameters. Notable features of this approach include: (i) enhanced determinability and predictive capability of the estimated parameters following an optimal design of experiments, (ii) accurate simulation of the experimental setup and transmural variation of local fiber directions in the FE environment, and (iii) application of all displacement paths to a single specimen to minimize testing time so that tissue viability could be maintained. Our results indicated that, in contrast to the common approach of conducting preselected tests and choosing an SEDF a posteriori, the optimal design of experiments, integrated with a chosen SEDF and full 3D kinematics, leads to a more robust characterization of the mechanical behavior of myocardium and higher predictive capabilities of the SEDF. The methodology proposed and demonstrated herein will ultimately provide a means to reliably predict tissue-level behaviors, thus facilitating organ-level simulations for efficient diagnosis and evaluation of potential treatments. While applied to myocardium, such developments are also applicable to characterization of other types of soft tissues.

Collaboration


Dive into the João S. Soares's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael S. Sacks

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chao Gao

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar

Yared Alemu

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Na Zhang

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar

Peng Zhang

Stony Brook University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge